1-5 of 5 results
-
Graphics Tools for Meteorology Research and Education
PI Mark Sinclair
A software package called MADS (Meteorological Analysis and Diagnostic Software) is being developed to provide gridded data (both archived and real-time) and graphical software to produce maps, cross-sections, vertical profiles, time series graphs and statistical (climatological) displays of a large number of basic and derived quantities.
Unlike similar proprietary software products, MADS is intuitive and very easy to use. Students produce publication-quality color maps and graphs with only a few minutes of instruction and typically remark on how easy the software is to use. Meteorology faculty have used MADS plots for their research, and MADS assignments have been implemented into meteorology classes. MADS is ideal for institutions with limited computing support and is maintained by various automated scripts that download or update archived datasets. This system is continually being enhanced to accommodate more and more features expected in a modern meteorological graphics display package.This project has the potential to enhance meteorology education. Weather analysis and forecasting require both critical thinking and three-dimensional spatial analysis skills to apply complex theory to the diagnosis of atmospheric processes from multiple environmental variables in a variety of graphical formats. Outside websites used by meteorology students to visualize atmospheric fields typically offer a limited menu of “standard” meteorological displays. Upper-division theory classes are usually taught from a purely mathematical standpoint, with limited application to real-time atmospheric phenomena. MADS allows students to visualize contributions of the individual terms in dynamical meteorology or thermodynamics equations and overlay them to see their relative impact in the current meteorological context.Categories: Faculty-Staff
-
Ice Cloud Parameterizations and Aircraft Icing
PI Dorothea Ivanova
Ice and mixed phase clouds have an important impact on aviation, but they are often poorly represented in the models.
This proposal seeks to help improve our understanding of aircraft icing occurrence through better parameterizations of the ice microphysical cloud properties. The goal of this proposal is to create a new Global Climate Model (GCM) parameterization for Arctic ice and mixed-phase clouds, and explore possible relationship between different type size distributions (SDs), and airplane icing. The study will utilize data for different ice crystal size spectra in arctic cold clouds, and data for the corresponding airplane icing occurrences. The PI has already developed and published parameterizations for mid-latitude and tropical ice clouds (Ivanova 2001, Ivanova 2004, Mitchell and Ivanova 2006, Mitchell et al. 2008). The tropical and mid-latitude schemes predict different behavior of the SDs for the same ice water content (IWC) and temperatures. As temperature decreases beyond -35C, the concentration of the small crystals is enhanced with the tropical scheme, but the opposite occurs with the mid-latitude scheme. This finding indicates that the microphysics properties of tropical and mid-latitude cold clouds are considerably different for the same IWC. It may also point to the different mechanisms by which convective and non-convective cold clouds are generated. Clearly, there is a need for Arctic and polar ice cloud parameterization, and for a study to explore the possibility of a relationship between the environmental conditions (temperature, IWC, supercooled liquid water content), different predicted size spectra, and aircraft icing. Cold cloud interactions with aircrafts that fly through them require knowledge of cloud microphysics. Aircrafts must be designed to fly into supercooled clouds, or they must avoid those clouds in order to prevent problems associated with airframe and engine icing. De-icing or anti-icing systems must be engineered to withstand reasonable extremes in terms of ice water content (IWC), supercooled liquid water content (LWC), ice particle size distributions (SDs), and temperature. The aircraft design or certification envelopes (FAR 25, Appendix C; Federal Aviation Administration, 1999) were developed before the advent of modern cloud physics instrumentation. In the case of ice and mixed-phase clouds, data from the new arctic field campaigns suggest that cloud temperature is one of the main parameters governing cloud microstructure, the size distributions, and ice water content affecting aircraft icing. Korolev et al. (2001) showed that the cold cloud size distributions may depend on the value of the ice particle size assumed. Parameterizations of ice particle sizes for mid-latitude and tropical ice clouds (Ivanova et al., 2001, Boudala et al., 2002; Ivanova 2004; Mitchell et al., 2008) appear in recent literature, and were implemented in the U. S. Community Climate model 3 (CCM3) Global Climate Model (GCM), and U.K. MetOffice GCM, but little is done to study high latitude cold clouds size distributions and how they may be related to the aircraft icing.Contact Information
Categories: Faculty-Staff Undergraduate
-
Mesoscale Computer Modeling of the North American Monsoon over Arizona
PI Dorothea Ivanova
The Department of Meteorology is involved in research on the North American (Mexican) Monsoon in Arizona and the U.S. Southwest.
The objectives of this project are:- To achieve a better understanding of the evolution of the North American monsoon system and its variations.
- To achieve a better understanding of the response of warm season atmospheric circulation and precipitation patterns to slowly varying boundary conditions (e.g. sea surface temperatures—SSTs, soil moisture), using advanced computer models.
- To run atmospheric mesoscale models (MM5 and WRF) utilizing the parallel-processor supercomputer on the Prescott Campus.
Contact Information
Categories: Faculty-Staff
-
Cbud Computing for Meteorology Education
PI Curtis James
Weather analysis and forecasting require both critical thinking and three-dimensional spatial analysis skills to apply complex theory to the diagnosis of atmospheric processes from multiple environmental variables in a variety of formats.
Existing websites used by meteorology students to visualize atmospheric fields are not designed to facilitate synthesis of weather information because they offer a limited menu of “standard” meteorological displays without pedagogical intent or clear reference to theoretical underpinnings. Thus, there exists a significant opportunity to enhance online weather visualization tools in the context of meteorology education. This project seeks to create a virtual online LINUX server using a cloud service provider for 4D weather analysis and visualization in real time. University Corporation for Atmospheric Research's (UCAR's) Unidata will configure the server using the Local Data Manager (LDM), a prototype installation of AWIPS II standalone EDEX server and CAVE client, and a RAMADDA server. Other meteorological tools will be configured for real-time use by National Weather Service meteorologists and the Department of Meteorology. All of these software packages will be accessible from any computer or mobile device using a web browser, and will support the Department's new focus in Emergency Response Meteorology practices and applications.
Contact Information
Categories: Faculty-Staff
-
UAV-based tools in forest environments
PI Scott Post
Measuring turbulent wind forces in forests to understand the forces on UAVs in flight, with a goal of being able to keep a UAV in position to mm tolerance.
Categories: Faculty-Staff
1-5 of 5 results