Embry-Riddle partners with private and public entities to assist in developing solutions to today's and tomorrow's aeronautical and aerospace problems. Here at the world's largest aviation-oriented university, our focus on applied research is unique.
Filter by




1-2 of 2 results

  • Maritime RobotX Challenge

    PI Eric Coyle

    CO-I Patrick Currier

    CO-I Charles Reinholtz

    CO-I Brian Butka

    The Maritime RobotX Challenge entails the development and demonstration of an autonomous surface vehicle (ASV). Embry-Riddle is one of three U.S. schools selected to compete in the challenge, which is co-sponsored by the Office of Naval Research (ONR) and the Association for Unmanned Vehicle Systems International (AUVSI) Foundation.



    ​The 2014 ERAU platform, named Minion, is a 16-foot fully-autonomous Wave Adaptive Modular Vessel (WAM-V) platform and is registered as an autonomous boat in the state of Florida. Minion's development currently focuses on autonomous tasks of buoy channel navigation, debris avoidance, docking, target identification and sonar localization. To accomplishing these tasks, the team has developed as set of system software nodes including state estimation, object classification, mapping and trajectory planning. These nodes run in parallel across a set of networked computers for distributed processing. Minion's propulsion system is centered around a set rim-driven hubless motors attached to articulated motor pods. This design reduces the risk of entanglement, and provides consistent thrust by maintaining motor depth in rough seas.

    The group is currently developing the 2016 platform for the competition

    Tags: engineering sciences mechanical engineering unmanned and autonomous systems electrical and computer engineering

    Categories: Faculty-Staff

  • Developing Artifact Peer Review Assignment Methodologies to Maximize the Value of Peer Review for Students

    PI Matthew Verleger

    This engineering education research project seeks to develop a proof-of-concept peer review matching algorithm and demonstrate if it is a valuable and viable methodology for conducting peer review. Peer review is a proven method that has positive impact on student learning. The project will test the algorithm on Model Eliciting Activities in the engineering classroom, and investigate how changing peer review can affect student learning.



    The broader significance and importance of this project is the transformative potential of improving peer review processes, since peer review is used throughout STEM and medical fields. Thus this preliminary investigation can extend outside the realm of improving student learning. This project overlaps with NSF's strategic goals of transforming the frontiers through preparation of an engineering workforce with new capabilities and expertise. Additionally NSF's goal of innovating for society is enabled by supporting the development of innovative learning systems.


    Tags: engineering fundamentals engineering sciences

    Categories: Faculty-Staff

1-2 of 2 results