Embry‑Riddle partners with private and public entities to assist in developing solutions to today's and tomorrow's aeronautical and aerospace problems. Here at the world's largest aviation-oriented university, our focus on applied research is unique.

Natural Fiber Reinforced Polymer (NFRP) Composites

PI Birce Dikici

This research is directed toward understanding the thermophysical and nanomechanical properties of NFRP composites in order to predict and optimize the behavior of the final product.

​According to Mordor Intelligence Market Research report, the natural fiber reinforced composites market is projected to register a compound annual ground rate of 11% during the forecast period (2021-2026). Natural fibers have the advantages of low cost, low density, and biodegradability. However, natural fibers also have some limitations such as moisture absorption, poor chemical and fire resistance, variations in fiber geometry, high dispersion of mechanical properties, poor interfacial interactions with polymeric matrices. Cellulose fibers are the most abundant natural fiber worldwide that form most of the agricultural wastes. One intriguing form of these fibers is nanocellulose. Nanocellulose consists of rod/fibril-like nanoparticles that have outstanding mechanical properties, low coefficients of thermal expansion, with a surface chemistry that can be readily modified.  Our group have demonstrated the ability to extract nanocellulose fibers from pinecones - using acid digestion- and fabricate an epoxy based composite. This research is directed toward understanding the thermophysical and nanomechanical properties of NFRP composites in order to predict and optimize the behavior of the final product.

Researchers

  • Birce Dikici
    Department
    Mechanical Engineering Department
    Degrees
    Ph.D., M.S., Texas Tech University

Categories: Faculty-Staff