Embry‑Riddle partners with private and public entities to assist in developing solutions to today's and tomorrow's aeronautical and aerospace problems. Here at the world's largest aviation-oriented university, our focus on applied research is unique.
Filter by



141-150 of 204 results

  • CyberCorps Scholarship for Service: High-skilled Workforce Development for the Aviation and Aerospace Cybersecurity Domains

    PI Omar Ochoa

    CO-I Keith Garfield

    CO-I Laxima Niure Kandel

    CO-I Krishna Sampigethaya

    This project promotes workforce development in this vital sector by building on undergraduate and graduate cybersecurity programs at Embry‑Riddle Aeronautical University (ERAU), where both ERAU campuses (Daytona Beach, FL and Prescott, AZ) have a history of collaborative education and research activities within the aviation and aerospace cybersecurity domain. 



    Aviation and aerospace cybersecurity is of critical importance to the Nation. As a key component of the overall U.S. transportation infrastructure, it protects people and contributes to American prosperity and leadership. This project promotes workforce development in this vital sector by building on undergraduate and graduate cybersecurity programs at Embry‑Riddle Aeronautical University (ERAU), where both ERAU campuses (Daytona Beach, FL and Prescott, AZ) have a history of collaborative education and research activities within the aviation and aerospace cybersecurity domain. Known locally as "Cyber Eagles," the project will advance the collaboration ecosystem across education programs and research centers to prepare students for productive cybersecurity careers and leadership roles in federal and state agencies. The program will recruit diverse scholars and create a supportive environment through effective mentorship, a well-developed curriculum, student involvement activities, and research experiences. These project components will help establish a pathway that enables students to participate in an environment where they can excel and enter a rewarding career in government aviation and aerospace administration agencies.

    The project aims to develop a high-skilled workforce to cover the Nation’s needs in the area of aviation and aerospace cybersecurity, focusing on the safety-criticality aspects of airborne systems and the protection of associated hardware and software assets. The project will fund 20 scholarships to students over a five-year period. Student scholars will benefit from the strong ties that ERAU has with Federal and state aviation and transportation administration agencies and the aviation and aerospace industry. Scholars will have the opportunity to meet and learn from top cybersecurity engineers and managers from government and industry through aviation and aerospace-themed projects, events, and symposia hosted by ERAU. Furthermore, the project will take advantage of on-site expertise at ERAU in all computation and communication services related to flight operations, including airborne hardware and software, avionics equipment, and network and communication data links among aircraft, ground stations, radar systems, and satellite systems. This expertise places the scholarship students in a unique position to contribute to cybersecurity protection during the design, development, and operation stages of systems specific for the aviation and aerospace domain.

    This project is supported by the CyberCorps® Scholarship for Service (SFS) program, which funds proposals establishing or continuing scholarship programs in cybersecurity and aligns with the U.S. National Cyber Strategy to develop a superior cybersecurity workforce. Following graduation, scholarship recipients are required to work in cybersecurity for a Federal, state, local, or tribal Government organization for the same duration as their scholarship support.

    Categories: Faculty-Staff

  • Expanding the Nation’s STEM Talent Pool by Accelerating Graduate Degree Completion in Computer, Software, and Cybersecurity Engineering

    PI Omar Ochoa

    CO-I Massood Towhidnejad

    CO-I Debarati Basu

    ​The project will increase student persistence in STEM fields by linking scholarships with a newly created effective ecosystem that combines evidence-based practices such as faculty mentoring, academic advising, participation in the learning community, professional development activities, guidance in acquiring internships and research opportunities.

    This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by fostering student success and supporting the retention and graduation of domestic, high-achieving, low-income students with demonstrated financial need at the Embry‑Riddle Aeronautical University, a non-profit private institution. Over its six-year duration, this project will fund scholarships to 25 undergraduate students to pursue four-year bachelor’s degrees in Computer Science, Software Engineering, or Computer Engineering. Subsequently the scholars will pursue a one-year accelerated master’s degree in one of the following areas: Software Engineering, Electrical, and Computer Engineering, or Cybersecurity Engineering. First-year students will receive up to five years of scholarship support. The project will increase student persistence in STEM fields by linking scholarships with a newly created effective ecosystem that combines evidence-based practices such as faculty mentoring, academic advising, participation in the learning community, professional development activities, guidance in acquiring internships and research opportunities. With the help of mentors, the scholars will create individual development plans outlining their career goals and steps toward achieving those goals. The project will also include the evaluation of the impact of the ecosystem on supporting the academic success of scholars and the identification of best practices and lessons learned. This project will significantly contribute towards creating a model that actively engages students from groups underrepresented in STEM fields of study, broadens participation in STEM, and infuses 25 talented and diverse engineers with advanced degrees in engineering into the American workforce.

    The overall goal of this project is to increase undergraduate and graduate STEM degree completion of domestic, low-income, high-achieving undergraduates with demonstrated financial need in STEM field. Three specific aims guide the project. First is to deliver financial support to domestic, low-income, high-achieving students who will pursue an undergraduate and accelerated master’s degree in engineering. Second is to leverage evidence-based practices to foster student success, increase retention and degree attainment. Third, and finally, is to evaluate the impact of the newly created ecosystem in supporting the academic success of scholars in engineering, and disseminate best practices and lessons learned. Little is known about the factors that affect the academic success of domestic, low-income, high-achieving undergraduate students in engineering fields at a private institution, and how factors such as gender, ethnic background and discipline impact their success, which is the focus of this project. Two research questions will be investigated in this project: (a) Does the academic success of scholars improve across the years by being part of this project? (b) What were the factors effecting the academic success of the scholars, and what are the accomplishments, best practices, and lessons learned from implementing the ecosystem for the scholars? This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.

    Categories: Faculty-Staff

  • Examining and addressing the content knowledge development needs of Florida's aspiring and newly-qualified mathematics teachers

    PI Catherine Paolucci

    CO-I Darryl Chamberlain

    CO-I Christopher Redding

    CO-I Sam Vancini

    CO-I Ashley Reese

    This project aims to support content knowledge development for secondary mathematics teachers, particularly those whose pathway to certification has included limited post-secondary studies of mathematics. 

    This project aims to support content knowledge development for secondary mathematics teachers, particularly those whose pathway to certification has included limited post-secondary studies of mathematics. Initially, it will focus on teachers in Florida who do not have a degree in mathematics or a relevant field and have earned temporary certification by taking the 6-12 Mathematics Subject Area Exam (SAE-Math). Longer term, it aims to serve teachers with similar backgrounds on a national level.  

    Researchers recognize mathematical knowledge as an influential factor in teachers’ classroom practice (Ball, Thames & Phelps, 2008; Goldsmith, Doerr, & Lewis, 2014; Lampert, 2001) and have established the potential for advanced mathematical studies to positively impact their mathematical knowledge for teaching (Paolucci, 2015). Therefore, it is reasonable to expect teachers with little or no mathematical studies beyond their own K-12 mathematics education to require support similar to that needed by out-of-field mathematics teachers – qualified teachers assigned to teach mathematics when it does not match their subject area training (Hobbs & Törner, 2019; Ní Ríodáin, Paolucci, & O’Dwyer, 2017). This is of particular concern given links between out-of-field teaching and teacher quality and research suggesting that teachers most often teach out of field in schools where students are already underserved (Ingersoll, 2002; Nguyen & Redding, 2018).  

    In Florida, aspiring mathematics teachers with undergraduate degrees in unrelated fields can still earn temporary certification by passing the SAE-Math, which allows them to immediately begin teaching. Many then enroll in programs designed to meet professional certification requirements (e.g. UF’s Educator Preparation Institute (EPI)); however, because they have passed the SAE-Math, no content-focused coursework is required. As a result, preparation for the SAE-Math can be the primary means by which they develop the content knowledge needed to teach, prior to entering the classroom.  

    With this in mind, this project aims to examine the content knowledge development needs of Florida’s temporarily certified mathematics teachers, with a focus on those who were required to take the SAE-Math because they did not have an undergraduate degree in or related to mathematics. The following short-term goals apply to work expected to be completed during the 12-month CRIF funding period: 

    Goal 1: Establish baseline trends in the mathematical backgrounds, knowledge, and experiences of Florida’s aspiring and newly-certified mathematics teachers to better understand their content knowledge development needs.  

    This is valuable information for mathematics teacher educators and teacher education programs throughout Florida committed to offering professional certification pathways that better support content knowledge development. 

    Goal 2: Create an online dynamic assessment tool that addresses gaps and weaknesses in alternatively- certified teachers’ content preparation and supports content knowledge development aligned with Florida’s B.E.S.T. standards. 

    Outcomes from these two goals will inform preparation of a federal funding proposal with the following long-term goals that build on the work completed during the CRIF funding period: 

    Goal 3: Expand and measure the statewide impact of the dynamic assessment tool through partnership with school districts and institutions currently offering Florida’s 24 state-approved EPI programs.  

    Goal 4: Scale implementation and impact measurement to a national level through analysis of other state certification exams that can inform online learning tools for a range of certification pathways and programs designed to support out-of-field teachers (e.g. Teach for America). 

    Findings from this research will contribute to two areas of mathematics education research – understanding and addressing the needs of out-of-field mathematics teachers (Hobbs & Törner, 2019; Ní Ríodáin et al., 2017) and teachers’ development of the specialized content knowledge that has been linked to classroom practice (Ball et al., 2008). It is also likely to have state and policy implications for teacher education. In particular, the research will contribute insight to an ongoing international debate about the amount and nature of the mathematics content that should be required for teacher preparation. 

    An array of theoretical frameworks concerning the knowledge required for teaching mathematics have been developed by key researchers in the area (e.g. Ball et al., 2008; Davis & Renert, 2013; Rowland & Ruthven, 2011; Tatto et al., 2012). Such models provide guidance for designing experiences that target teacher knowledge development (Chapman, 2013), and particularly in this context, thinking about the development alternatively certified mathematics teachers. This project will incorporate and build on this work. The findings will also be valuable for mathematics teacher education in Florida as the state shifts to its new B.E.S.T. state standards in 2022.  

    Categories: Faculty-Staff

  • Mobile Technology in Higher Education: An Extended Technology Acceptance Perspective

    PI Dennis Pires

    PI Leila Halawi

    The study provides an important theoretical framework for decision-making for educational institutions as they seek improvement in user acceptance of technology in the higher education setting. The study adds to the knowledge in the field of information technology by providing statistical research that uses path analysis to disentangle the various causal processes underlying the acceptance of technology in higher education. In this study, the research addresses the following question: Are the constructs of perceived resources, perceived ease of use, perceived usefulness, and attitude towards use significant predictors of educators’ acceptance of mobile technology in higher education as defined by actual use? 



    The objective of this research study is to study the mobile technology acceptance of educators in the higher education industry in the United States. This study will utilize the Chen et al. (2013) extended technology acceptance model, that extended the original Davis (1989) TAM. In this research study, Chen et al. (2013) survey instrument will provide the necessary tool to collect data. Preliminary results show statistical significance exist in relationships across the assessed factors of perceived usefulness, perceived ease of use, perceived usefulness, attitude toward use, and behavioral intention, that contribute to the acceptance of mobile technology in higher education. The implications of the study are that institutions face a challenging task to understand the technology acceptance of educators as they incorporate the use of mobile technology to support their work and improve instructional practices. (Chen, B., Sivo, S., Seilhamer, R., Sugar, A., & Mao, J., 2013) and (Davis, F. D., 1989). 

    Categories: Faculty-Staff

  • What Differentiates Superior Performing Aviation and Aerospace Leaders

    PI Linda Pittenger

    The requirements of leaders today are radically different than just a couple years ago. Leaders need to be able to manage change, think critically, act globally, think technologically, and successfully lead a diverse workforce. Specific behavioral competencies may distinguish superior performing leaders from average performing leaders

    This qualitative study will examine the differences between average and superior aviation and aerospace leaders to uncover what differentiating behavioral competencies might predict superior performance in the leadership role.

    Categories: Faculty-Staff

  • Matrix Analysis and Operator Theory

    PI Edward Poon

    Matrices and operators are ubiquitous throughout science, engineering, and mathematics; they are the transformations that arise whenever one studies a linear system (or approximates a nonlinear system by a linear one). Examples include rotations and reflections (rigid motions of space), spin operators (quantum mechanics and quantum computing), stress tensors (mechanics), regression and curve fitting (statistics and data analysis), derivatives and linear differential operators (dynamical systems), to name just a few.  By studying various properties, relations, and transformations of matrices and operators one may obtain insight into a wide range of phenomena.

    One particular class of problems of interest is the study of preservers.  For example, if M_n denotes the space of n x n matrices, one might ask for a complete classification of the isometries preserving a fixed norm.  More generally, given any (possibly multi-valued) function f of a matrix (such as its determinant, rank, eigenvalues, singular values, numerical range, etc) one can ask for a description of the maps T:M_n -> M_n satisfying f(T(A)) = f(A) for all A in M_n; in this case one says that T preserves f.  Usually one imposes some additional structure on T, requiring that it be linear, or simply additive, or multiplicative, and so on.  One might also wish to describe those maps T leaving certain special subsets of matrices invariant (such as projections, unitaries, rank one matrices, etc.).  A broad range of tools and concepts are used in solving such preserver problems; for example, consideration of the dual norm, coupled with convexity arguments, can be handy in classifying isometries, while majorization may appear in problems involving eigenvalues, singular values, and unitarily invariant norms.  Currently, investigation is being conducted on isometries of certain matrix subalgebras, as well as preservers of certain collections of projections.

    Categories: Faculty-Staff

  • UAV-based tools in forest environments

    PI Scott Post

    Measuring turbulent wind forces in forests to understand the forces on UAVs in flight, with a goal of being able to keep a UAV in position to mm tolerance. 

    Categories: Faculty-Staff

  • Astronomy

    PI Pragati Pradhan

    CO-I Brian Rachford

    CO-I Noel Richardson

    Astronomy is one of the oldest sciences, as people have been observing and learning from the stars for thousands of years. Astronomy has expanded beyond visible light to include the full spectrum of electromagnetic waves, from radio to x-rays and gamma rays, as well as cosmic messengers beyond the electromagnetic spectrum.

    Embry‑Riddle Prescott's astronomy research covers a broad range of topics and observation techniques, with a particular focus on binary star systems. Our Campus Observatory includes 20-inch and 16-inch optical telescopes, several radio dishes and cameras for meteor observations. Student and faculty researchers work with data from both space-based satellites spanning the electromagnetic spectrum from the high-energy X-rays through the thermal infrared, as well as ground-based optical and infrared telescopes across the globe. Our astronomy faculty has a strong track record of publications with student authors and receives external funding from various sources, including NASA and the Space Telescope Science Institute.

    Categories: Faculty-Staff

  • Investigate Detect and Avoid Track Classification and Filtering

    PI Richard Prazenica

    CO-I Troy Henderson

    CO-I Morad Nazari

    CO-I Tyler Spence

    This research will identify key sources of uncertainty in representative detect and avoid architectures and assess the downstream risks and effects of spurious information on downstream system performance

    In this project, which is funded by the FAA ASSURE program, the research team consisting of The Ohio State University, Embry‑Riddle Aeronautical University, Mississippi State University, University of North Dakota and Cal Analytics will work together to:

    • Identify the key sources of misleading surveillance information produced by airborne and ground-based detect and avoid (DAA) systems. Develop risk modeling and analysis tools to assess the system-wide effects of false or misleading information on alerting and separation, as well as impacts on pilots in command (PIC) and air traffic operators.
    • Provide guidance and recommendations for track classification and filter performance and safety requirements to standards bodies, including Radio Technical Commission for Aeronautics (RTCA) and American Society for Testing and Materials (ASTM) DAA working groups, and inform Federal Aviation Administration (FAA) rulemaking on DAA operations.

    Current guidance provided by the Federal Aviation Administration has made beyond visual line of sight (BVLOS) missions an executive priority. Key to the success of these missions is the development of DAA systems capable of providing accurate pilot in the loop, or autonomous deconfliction guidance. Current standards for DAA services provided by RTCA and ASTM do not address the requirements for system performance with respect to generation of false or misleading information to the PIC or autonomous response services of the unmanned aircraft system. This research will identify key sources of uncertainty in representative DAA architectures and assess the downstream risks and effects of spurious information on downstream system performance. Additionally, recommendations will be developed for track classification accuracy requirements that provide sufficient safety margins for enabling DAA services in support of BVLOS missions.

    Categories: Faculty-Staff

  • Argumentative Knowledge Construction in Asynchronous Calculus Discussion Boards

    PI Zackery Reed

    CO-I Darryl Chamberlain

    CO-I Karen Keene

    Social learning tasks can provide additional cognitive benefits to students. These tasks are necessarily different in an asynchronous environment though. Our proposed study will investigate how instructors can encourage students to socially construct knowledge during asynchronous discussions. 



    Categories: Faculty-Staff

141-150 of 204 results