151-160 of 217 results
-
UAV-based tools in forest environments
PI Scott Post
Measuring turbulent wind forces in forests to understand the forces on UAVs in flight, with a goal of being able to keep a UAV in position to mm tolerance.
Categories: Faculty-Staff
-
Astronomy
PI Pragati Pradhan
CO-I Brian Rachford
CO-I Noel Richardson
Astronomy is one of the oldest sciences, as people have been observing and learning from the stars for thousands of years. Astronomy has expanded beyond visible light to include the full spectrum of electromagnetic waves, from radio to x-rays and gamma rays, as well as cosmic messengers beyond the electromagnetic spectrum.
Embry‑Riddle Prescott's astronomy research covers a broad range of topics and observation techniques, with a particular focus on binary star systems. Our Campus Observatory includes 20-inch and 16-inch optical telescopes, several radio dishes and cameras for meteor observations. Student and faculty researchers work with data from both space-based satellites spanning the electromagnetic spectrum from the high-energy X-rays through the thermal infrared, as well as ground-based optical and infrared telescopes across the globe. Our astronomy faculty has a strong track record of publications with student authors and receives external funding from various sources, including NASA and the Space Telescope Science Institute.Categories: Faculty-Staff
-
Investigate Detect and Avoid Track Classification and Filtering
PI Richard Prazenica
CO-I Troy Henderson
CO-I Morad Nazari
CO-I Tyler Spence
This research will identify key sources of uncertainty in representative detect and avoid architectures and assess the downstream risks and effects of spurious information on downstream system performance
In this project, which is funded by the FAA ASSURE program, the research team consisting of The Ohio State University, Embry‑Riddle Aeronautical University, Mississippi State University, University of North Dakota and Cal Analytics will work together to:
- Identify the key sources of misleading surveillance information produced by airborne and ground-based detect and avoid (DAA) systems. Develop risk modeling and analysis tools to assess the system-wide effects of false or misleading information on alerting and separation, as well as impacts on pilots in command (PIC) and air traffic operators.
- Provide guidance and recommendations for track classification and filter performance and safety requirements to standards bodies, including Radio Technical Commission for Aeronautics (RTCA) and American Society for Testing and Materials (ASTM) DAA working groups, and inform Federal Aviation Administration (FAA) rulemaking on DAA operations.
Current guidance provided by the Federal Aviation Administration has made beyond visual line of sight (BVLOS) missions an executive priority. Key to the success of these missions is the development of DAA systems capable of providing accurate pilot in the loop, or autonomous deconfliction guidance. Current standards for DAA services provided by RTCA and ASTM do not address the requirements for system performance with respect to generation of false or misleading information to the PIC or autonomous response services of the unmanned aircraft system. This research will identify key sources of uncertainty in representative DAA architectures and assess the downstream risks and effects of spurious information on downstream system performance. Additionally, recommendations will be developed for track classification accuracy requirements that provide sufficient safety margins for enabling DAA services in support of BVLOS missions.
Categories: Faculty-Staff
-
Argumentative Knowledge Construction in Asynchronous Calculus Discussion Boards
PI Zackery Reed
CO-I Darryl Chamberlain
CO-I Karen Keene
Social learning tasks can provide additional cognitive benefits to students. These tasks are necessarily different in an asynchronous environment though. Our proposed study will investigate how instructors can encourage students to socially construct knowledge during asynchronous discussions.
Categories: Faculty-Staff
-
Researching How You Teach Holistic Modeling (RHYTHM)
PI Kelsey Rodgers
CO-I Matthew Verleger
CO-I Lisa Davids
"Models are a critical part of the analysis and design of engineered systems. The purpose of multiple types of models (physical, mathematical, computational, and financial) is to provide a simplified representation of reality that mimics the features of the engineered system, and that predicts the behavior of the system. This project, a collaboration between Embry‑Riddle Aeronautical University, San Jose State University, and the University of Louisville, aims to improve engineering students' modeling competence. The project plans to achieve this goal by transforming first-year engineering courses to teach modeling as an engineering tool. The project will change existing course materials, pedagogy, and assessment methods across the three institutions. Each institution will implement its own specific strategy to teach mathematical, physical, computational, and financial modeling, thus providing three different approaches. By comparing student's modeling abilities across the institutions and approaches, the project aims to identify the most impactful approaches for teaching multiple modeling in introductory undergraduate engineering courses.
The project is guided by a "holistic modeling perspective" theoretical framework, that builds on the successful "Models and Modeling Perspective" and "Computational Adaptive Expertise" frameworks. The objectives of the project are to: (1) implement, test, and refine holistic modeling environments for institutions that have flexibility in changing curriculum and for instructors that have different degrees of interest in changing their course(s); (2) implement, test, and refine methods to assess students' modeling abilities; and (3) evaluate and present the results of modeling abilities attained by students at three different universities. A unified language and discussion around modeling will be adopted in all revised courses. An assessment tool to measure students' modeling competence will be developed and implemented at each university. This work builds upon existing research in the development of more easily adaptable and adoptable modeling pedagogies and modeling languages. The following broad research question guides the research: How do students' definitional knowledge, ability to apply, and ability to create models change based on different degrees of modeling integration in the classroom?
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria."
Categories: Faculty-Staff
-
CAREER: Additively Manufactured 3D Reconfigurable Antennas
PI Eduardo Rojas
The focus of this CARRER development project is on an emerging antenna fabrication technique that combines additive manufacturing (AM) and pulsed laser machining that has the potentials to fundamentally alter the existing state of the art.
Antennas are key components of ubiquitous wireless communication, radar, and navigation systems that affect widespread societal needs, such as aerospace systems, healthcare, and space exploration. Most of the antennas used in a variety of applications including cellular phones to unmanned aircraft systems (UAS) are based on flat planar structures or wire geometries that are developed using traditional manufacturing technique. This approach does not allow designers the opportunity to fully leverage the geometry, space, and materials available to design better performing antennas. The focus of this CARRER development project is on an emerging antenna fabrication technique that combines additive manufacturing (AM) and pulsed laser machining that has the potentials to fundamentally alter the existing state of the art. The proposed research will allow engineers to implement smaller, efficient, lighter, and reconfigurable antenna embodiments in three-dimensions (3D) for future applications with increasing complexity. The research proposed in this project is fully integrated with an education and outreach plan. The educational plan will impact the next generation of professionals by exposing high school students to hands-on activities and videos to explain basic antenna engineering concepts. The videos will be made by accomplished engineers in the engineering field to have a strong role-model-based motivational component to stimulate them to pursue STEM careers. An advanced cellular phone-based teaching tool that allows engineering undergraduate students to visualize complex 3D concepts in electromagnetics and antenna engineering is also proposed.
The overall goal of this project is to pursue the discovery of the next generation of antennas with reconfigurable performance while conserving size, weight and cost. Research initiatives include: (a) the investigation of novel additive manufacturing processes for the fabrication of conformal 3D multiple curved antennas based on laser-enhanced direct print AM (LE-DPAM) with femtosecond laser machining and 5-axis kinematics, (b) the study of bio-inspired 3D superior antenna geometries that are not possible to manufacture using traditional methods but are conceivable using LE-DPAM, (c) the development of design methods based on a novel 3D to 2D conformal mapping technique, (d) the study of embedded material- and IC-based reconfigurability mechanisms including the use of electrically tunable inks that can be deposited on conformal surfaces, as well as IC-based switches for reconfiguration of antenna feeds and loads, and (e) the investigation of the structure-property relationships of commercially available and custom-formulated inks that provide excellent electromagnetic performance while addressing the needs for aviation and space environments.
Categories: Faculty-Staff
-
FMSG: Cyber: Perceptual and Cognitive Additive Manufacturing (PCAM)
PI Eduardo Rojas
CO-I Daewon Kim
This grant supports fundamental research on a radical transformation of additive manufacturing through digitally connecting machines, humans, and manufactured products.
This grant supports fundamental research on a radical transformation of additive manufacturing through digitally connecting machines, humans, and manufactured products. Additive manufacturing has enabled a new paradigm shift from conventional design for manufacturing approaches into manufacturing for design. A fundamental change in additive manufacturing is necessary as we enter a new era of intelligent future manufacturing beyond additive manufacturing. A promising solution is the convergence of wireless embedded sensors with artificial intelligence (AI) and machine learning (ML) data processes, which can transform the way people interact with manufacturing processes, factory operations, optimizing efficiency, and anomaly system detection that could provide critical information about evaluated components and systems. This project opens a new transitional door to perceptive and cognitive additive manufacturing, enabling true internet of things and digital twin, connecting devices and machines in factories with robots, computers, and humans, and every product we manufacture in factories. The grant will also support educational activities to upskill the manufacturing workforce, K-12, undergraduate and graduate students, and the public, significantly influencing diverse populations of all ages and backgrounds.
Transformation to cyber-physical production manufacturing demands advanced process monitoring through distributed sensing beyond the current state of digitally connected machines and robots collaborating with humans. This project seeks to enable unprecedented wireless fingerprinting and sensing of additively manufactured parts by embedding wireless sensors and performing predictive analysis and health monitoring using AI and ML techniques. This project proposes a holistic approach involving four core research tasks: 1) to study the effects of embedding sensors during additive manufacturing; 2) to design embeddable acoustic sensors and insert them during the manufacturing process to read physical parameters; 3) to prove that embedded passive sensor signals can be sensed wirelessly using millimeter-wave antennas, and 4) to quickly monitor and evaluate the state of manufactured products using ML algorithms. This project has the potential to enable next-generation cyber-physical production systems.
Categories: Faculty-Staff
-
EXTENDING THE LAUNDERED FUNDS DESTINATION THEORY: APPLYING THE WALKER-UNGER GRAVITY MODEL TO RUSSIAN-BASED MONEY LAUNDERER COUNTRY PREFERENCE FROM 2000-2020
PI Juan Roman
CO-I Thomas Schaefer
CO-I Ana Machuca
Determine Russian-based money launderer destination preferrence.
The quantification of illicit finance practices along with the generated revenue from transnational criminal activity and their presence within the global financial system is still a new phenomenon. Careful examination of the effects of money laundering is needed in order to develop strategies to combat the problem. The literature suggests attempts to quantify the presence of laundered funds in the global economy are inaccurate. This research applied the modified Walker-Unger model to show the degree of attractiveness of a country for Russian-based money launderers to send their illicit funds for the 2000-2020 time period. The theoretical justification for this investigation is that once the scale of unlawful financial flows are known, the likely impact on society can be analyzed.Categories: Faculty-Staff
-
A Knowledge-based Consultant for Diagnosing Toxic Exposures
PI Joel Schipper
Joel Schipper of Electrical and Computer Engineering works with the Florida Poison Information Center to develop a knowledge-based system to aid in the timely diagnosis of exposures to unknown toxins.
Categories: Faculty-Staff Undergraduate
-
Transfer and Retention of Training in Real and Virtual Spaceflight Environments
PI Erik Seedhouse
This research compared how effectively suborbital tasks are learned in an actual NBE compared with a VR-rendered NBE. This study demonstrated the efficacy of NBE-type training as a means to improve the effectiveness of training suborbital SFPs.
Manned suborbital spaceflights are just around the corner. SpaceShipTwo, operated by Virgin Galactic and New Shepard, operated by Blue Origin, will most likely fly fare-paying passengers sometime in 2020. Each passenger will pay $250,000. And, with just four minutes (240 seconds) of actual microgravity time, that equates to almost $1000/second. For spaceflight participants (SFPs) a category which will include tourists and scientists, the cost of incorrectly performing even simple tasks will be extremely costly.
In spaceflight, even for highly trained astronauts, the tactile-kinesthetic and vestibular systems are affected by weightlessness. Of course, astronauts traveling to the International Space Station (ISS) have plenty of time to adapt, but SFPs will have no time at all – the time from rocket ignition to microgravity is less than 5 minutes. Compounding this lack of adaptation is the fact that suborbital SFPs will generally only have 3 days of training (compared with many years of training for an astronaut headed to the ISS). To overcome the aforementioned difficulties this study evaluated two spaceflight analogous training systems specific to suborbital spaceflight: one that will take place in an actual neutral buoyancy environment (NBE) and one that will take place in a virtual reality (VR) NBE.
To date, there have no studies that have evaluated the effectiveness of VR as a means of training suborbital SFPs. Nor have there been any studies that evaluate the utility of NBE-type training for suborbital SFPs. Not only did this study assess the effectiveness of each of these methods of training. It also developed a training tool for the commercial suborbital spaceflight industry. To that end, this study sought to achieve three objectives:
- Measure the effectiveness of neutral buoyancy dive training while wearing the EasyDive system as a means to train suborbital SFPs in a swimming pool
- Measure the effectiveness of neutral buoyancy dive training in an underwater-simulated VR environment as a means of improving maneuvering and performance of tasks in microgravity.
- Based on the results of objectives #1 and #2 a training program for SFPs will be devised.
Categories: Faculty-Staff
151-160 of 217 results