Embry‑Riddle partners with private and public entities to assist in developing solutions to today's and tomorrow's aeronautical and aerospace problems. Here at the world's largest aviation-oriented university, our focus on applied research is unique.
Filter by



151-160 of 219 results

  • What Differentiates Superior Performing Aviation and Aerospace Leaders

    PI Linda Pittenger

    The requirements of leaders today are radically different than just a couple years ago. Leaders need to be able to manage change, think critically, act globally, think technologically, and successfully lead a diverse workforce. Specific behavioral competencies may distinguish superior performing leaders from average performing leaders

    This qualitative study will examine the differences between average and superior aviation and aerospace leaders to uncover what differentiating behavioral competencies might predict superior performance in the leadership role.

    Categories: Faculty-Staff

  • Matrix Analysis and Operator Theory

    PI Edward Poon

    Matrices and operators are ubiquitous throughout science, engineering, and mathematics; they are the transformations that arise whenever one studies a linear system (or approximates a nonlinear system by a linear one). Examples include rotations and reflections (rigid motions of space), spin operators (quantum mechanics and quantum computing), stress tensors (mechanics), regression and curve fitting (statistics and data analysis), derivatives and linear differential operators (dynamical systems), to name just a few.  By studying various properties, relations, and transformations of matrices and operators one may obtain insight into a wide range of phenomena.

    One particular class of problems of interest is the study of preservers.  For example, if M_n denotes the space of n x n matrices, one might ask for a complete classification of the isometries preserving a fixed norm.  More generally, given any (possibly multi-valued) function f of a matrix (such as its determinant, rank, eigenvalues, singular values, numerical range, etc) one can ask for a description of the maps T:M_n -> M_n satisfying f(T(A)) = f(A) for all A in M_n; in this case one says that T preserves f.  Usually one imposes some additional structure on T, requiring that it be linear, or simply additive, or multiplicative, and so on.  One might also wish to describe those maps T leaving certain special subsets of matrices invariant (such as projections, unitaries, rank one matrices, etc.).  A broad range of tools and concepts are used in solving such preserver problems; for example, consideration of the dual norm, coupled with convexity arguments, can be handy in classifying isometries, while majorization may appear in problems involving eigenvalues, singular values, and unitarily invariant norms.  Currently, investigation is being conducted on isometries of certain matrix subalgebras, as well as preservers of certain collections of projections.

    Categories: Faculty-Staff

  • UAV-based tools in forest environments

    PI Scott Post

    Measuring turbulent wind forces in forests to understand the forces on UAVs in flight, with a goal of being able to keep a UAV in position to mm tolerance. 

    Categories: Faculty-Staff

  • Astronomy

    PI Pragati Pradhan

    CO-I Brian Rachford

    CO-I Noel Richardson

    Astronomy is one of the oldest sciences, as people have been observing and learning from the stars for thousands of years. Astronomy has expanded beyond visible light to include the full spectrum of electromagnetic waves, from radio to x-rays and gamma rays, as well as cosmic messengers beyond the electromagnetic spectrum.

    Embry‑Riddle Prescott's astronomy research covers a broad range of topics and observation techniques, with a particular focus on binary star systems. Our Campus Observatory includes 20-inch and 16-inch optical telescopes, several radio dishes and cameras for meteor observations. Student and faculty researchers work with data from both space-based satellites spanning the electromagnetic spectrum from the high-energy X-rays through the thermal infrared, as well as ground-based optical and infrared telescopes across the globe. Our astronomy faculty has a strong track record of publications with student authors and receives external funding from various sources, including NASA and the Space Telescope Science Institute.

    Categories: Faculty-Staff

  • Investigate Detect and Avoid Track Classification and Filtering

    PI Richard Prazenica

    CO-I Troy Henderson

    CO-I Morad Nazari

    CO-I Tyler Spence

    This research will identify key sources of uncertainty in representative detect and avoid architectures and assess the downstream risks and effects of spurious information on downstream system performance

    In this project, which is funded by the FAA ASSURE program, the research team consisting of The Ohio State University, Embry‑Riddle Aeronautical University, Mississippi State University, University of North Dakota and Cal Analytics will work together to:

    • Identify the key sources of misleading surveillance information produced by airborne and ground-based detect and avoid (DAA) systems. Develop risk modeling and analysis tools to assess the system-wide effects of false or misleading information on alerting and separation, as well as impacts on pilots in command (PIC) and air traffic operators.
    • Provide guidance and recommendations for track classification and filter performance and safety requirements to standards bodies, including Radio Technical Commission for Aeronautics (RTCA) and American Society for Testing and Materials (ASTM) DAA working groups, and inform Federal Aviation Administration (FAA) rulemaking on DAA operations.

    Current guidance provided by the Federal Aviation Administration has made beyond visual line of sight (BVLOS) missions an executive priority. Key to the success of these missions is the development of DAA systems capable of providing accurate pilot in the loop, or autonomous deconfliction guidance. Current standards for DAA services provided by RTCA and ASTM do not address the requirements for system performance with respect to generation of false or misleading information to the PIC or autonomous response services of the unmanned aircraft system. This research will identify key sources of uncertainty in representative DAA architectures and assess the downstream risks and effects of spurious information on downstream system performance. Additionally, recommendations will be developed for track classification accuracy requirements that provide sufficient safety margins for enabling DAA services in support of BVLOS missions.

    Categories: Faculty-Staff

  • Argumentative Knowledge Construction in Asynchronous Calculus Discussion Boards

    PI Zackery Reed

    CO-I Darryl Chamberlain

    CO-I Karen Keene

    Social learning tasks can provide additional cognitive benefits to students. These tasks are necessarily different in an asynchronous environment though. Our proposed study will investigate how instructors can encourage students to socially construct knowledge during asynchronous discussions. 



    Categories: Faculty-Staff

  • Researching How You Teach Holistic Modeling (RHYTHM)

    PI Kelsey Rodgers

    CO-I Matthew Verleger

    CO-I Lisa Davids

    "Models are a critical part of the analysis and design of engineered systems. The purpose of multiple types of models (physical, mathematical, computational, and financial) is to provide a simplified representation of reality that mimics the features of the engineered system, and that predicts the behavior of the system. This project, a collaboration between Embry‑Riddle Aeronautical University, San Jose State University, and the University of Louisville, aims to improve engineering students' modeling competence. The project plans to achieve this goal by transforming first-year engineering courses to teach modeling as an engineering tool. The project will change existing course materials, pedagogy, and assessment methods across the three institutions. Each institution will implement its own specific strategy to teach mathematical, physical, computational, and financial modeling, thus providing three different approaches. By comparing student's modeling abilities across the institutions and approaches, the project aims to identify the most impactful approaches for teaching multiple modeling in introductory undergraduate engineering courses.

    The project is guided by a "holistic modeling perspective" theoretical framework, that builds on the successful "Models and Modeling Perspective" and "Computational Adaptive Expertise" frameworks. The objectives of the project are to: (1) implement, test, and refine holistic modeling environments for institutions that have flexibility in changing curriculum and for instructors that have different degrees of interest in changing their course(s); (2) implement, test, and refine methods to assess students' modeling abilities; and (3) evaluate and present the results of modeling abilities attained by students at three different universities. A unified language and discussion around modeling will be adopted in all revised courses. An assessment tool to measure students' modeling competence will be developed and implemented at each university. This work builds upon existing research in the development of more easily adaptable and adoptable modeling pedagogies and modeling languages. The following broad research question guides the research: How do students' definitional knowledge, ability to apply, and ability to create models change based on different degrees of modeling integration in the classroom?

    This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria."



    Categories: Faculty-Staff

  • CAREER: Additively Manufactured 3D Reconfigurable Antennas

    PI Eduardo Rojas

    ​The focus of this CARRER development project is on an emerging antenna fabrication technique that combines additive manufacturing (AM) and pulsed laser machining that has the potentials to fundamentally alter the existing state of the art. 

    Antennas are key components of ubiquitous wireless communication, radar, and navigation systems that affect widespread societal needs, such as aerospace systems, healthcare, and space exploration. Most of the antennas used in a variety of applications including cellular phones to unmanned aircraft systems (UAS) are based on flat planar structures or wire geometries that are developed using traditional manufacturing technique. This approach does not allow designers the opportunity to fully leverage the geometry, space, and materials available to design better performing antennas. The focus of this CARRER development project is on an emerging antenna fabrication technique that combines additive manufacturing (AM) and pulsed laser machining that has the potentials to fundamentally alter the existing state of the art. The proposed research will allow engineers to implement smaller, efficient, lighter, and reconfigurable antenna embodiments in three-dimensions (3D) for future applications with increasing complexity. The research proposed in this project is fully integrated with an education and outreach plan. The educational plan will impact the next generation of professionals by exposing high school students to hands-on activities and videos to explain basic antenna engineering concepts. The videos will be made by accomplished engineers in the engineering field to have a strong role-model-based motivational component to stimulate them to pursue STEM careers. An advanced cellular phone-based teaching tool that allows engineering undergraduate students to visualize complex 3D concepts in electromagnetics and antenna engineering is also proposed.

    The overall goal of this project is to pursue the discovery of the next generation of antennas with reconfigurable performance while conserving size, weight and cost. Research initiatives include: (a) the investigation of novel additive manufacturing processes for the fabrication of conformal 3D multiple curved antennas based on laser-enhanced direct print AM (LE-DPAM) with femtosecond laser machining and 5-axis kinematics, (b) the study of bio-inspired 3D superior antenna geometries that are not possible to manufacture using traditional methods but are conceivable using LE-DPAM, (c) the development of design methods based on a novel 3D to 2D conformal mapping technique, (d) the study of embedded material- and IC-based reconfigurability mechanisms including the use of electrically tunable inks that can be deposited on conformal surfaces, as well as IC-based switches for reconfiguration of antenna feeds and loads, and (e) the investigation of the structure-property relationships of commercially available and custom-formulated inks that provide excellent electromagnetic performance while addressing the needs for aviation and space environments.

    Categories: Faculty-Staff

  • EXTENDING THE LAUNDERED FUNDS DESTINATION THEORY: APPLYING THE WALKER-UNGER GRAVITY MODEL TO RUSSIAN-BASED MONEY LAUNDERER COUNTRY PREFERENCE FROM 2000-2020

    PI Juan Roman

    CO-I Thomas Schaefer

    CO-I Ana Machuca

    Determine Russian-based money launderer destination preferrence.

    The quantification of illicit finance practices along with the generated revenue from transnational criminal activity and their presence within the global financial system is still a new phenomenon.  Careful examination of the effects of money laundering is needed in order to develop strategies to combat the problem.  The literature suggests attempts to quantify the presence of laundered funds in the global economy are inaccurate.  This research applied the modified Walker-Unger model to show the degree of attractiveness of a country for Russian-based money launderers to send their illicit funds for the 2000-2020 time period.  The theoretical justification for this investigation is that once the scale of unlawful financial flows are known, the likely impact on society can be analyzed.

    Categories: Faculty-Staff

  • A Knowledge-based Consultant for Diagnosing Toxic Exposures

    PI Joel Schipper

    Joel Schipper of Electrical and Computer Engineering works with the Florida Poison Information Center to develop a knowledge-based system to aid in the timely diagnosis of exposures to unknown toxins.

    Categories: Faculty-Staff Undergraduate

151-160 of 219 results