31-40 of 204 results
-
CubeSats Hosting Flexible Appendages for On-Orbit Testing of Advanced Control Algorithms
PI Riccardo Bevilacqua
The objective of this work is to start the assembly of a CubeSat hosting specialized flexible appendages, taking inspiration from a previously designed spacecraft developed by the Advanced Autonomous Multiple Spacecraft (ADAMUS).
The objective of this work is to start the assembly of a CubeSat hosting specialized flexible appendages, taking inspiration from a previously designed spacecraft developed by the Advanced Autonomous Multiple Spacecraft (ADAMUS). This CubeSat will eventually enable testing of ADAMUS’ developed spacecraft control algorithms on-orbit.
Relevance to NASA: The innovation proposed herein lies in the ability to autonomously characterize and control complex space structures. This project will directly support NASA’s TA 4: Robotics and Autonomous Systems
Categories: Faculty-Staff
-
A Machine Learning Based Transfer to Predict Warhead In-Flight Behavior from Static Arena Test Data
PI Riccardo Bevilacqua
The objective of this work is to combine high-fidelity numerical models with unique/ad-hoc experimental activities to strengthen basic science underpinning the test and evaluation framework for warhead fragmentation and fragments fly-out.
Warhead fragmentation predictions are based on either numerical simulations or static arena tests where detonations occur in unrealistic conditions (not flying). The first methodology presents many shortcomings: there is no agreement on the state of the art for simulations, and many tools ignore important aspects such as gravity, aerodynamic forces and moments, and rigid body motion of different shape fragments. Numerical simulations are also lengthy and cannot be used as online/on-the-battlefield tools. The experimental approach is also extremely limited, as it does not reproduce the real-world conditions of a moving warhead.
The objective of this work is to combine high-fidelity numerical models with unique/ad-hoc experimental activities to strengthen basic science underpinning the test and evaluation framework for warhead fragmentation and fragments fly-out. In particular, we will aim at combining the most advanced simulation capabilities with static experimental data, to obtain a transfer function predicting lethality and collateral damage of a given warhead in real-life conditions. Artificial neural networks and/or other machine learning tools (e.g., Random Forests) will be used to capture the underlying physics governing fragments dispersion under dynamic conditions, coming from NAVAIR’s Spidy software, and eventually combine this knowledge with real warhead characteristics, coming from the static test. This proposal is of high impact because of the existing gap in analytical tools to define and validate warhead fragmentation testing.
The broader impact (long term) of this work may be a software tool that the warfighter can use on the field to rapidly assess the effects of the arsenal at his disposal. This tool will be equally beneficial to designers and testers within the Air Force and the DoD in general.
Categories: Faculty-Staff
-
Evaluating Preflight Weather Briefing Strategies
PI Elizabeth Blickensderfer
CO-I Thomas Guinn
CO-I Robert Thomas
The objective of this grant is to examine General Aviation (GA) pilots’ capability to conduct Preflight Weather self-briefings as compared to using Flight Services to obtain weather briefings. Previous research indicates that GA pilots are increasingly conducting weather self-briefings during preflight (Duke et al., 2019). Additional research indicates that GA pilots have moderately low performance when interpreting aviation weather observation and forecast products (Blickensderfer et al., 2019). Research is needed to assess and understand the attitudes, knowledge, and performance of GA pilots conducting self-briefings to identify possible gaps and, in turn, provide recommendations for future system design and pilot training.
Categories: Faculty-Staff
-
STEM Literacy and Service-Learning
PI Sally Blomstrom
This service-learning project investigates STEM literacy and involves students in sections of Speech (COM 219). Students create an audio tour about a specimen from the A. Jewell Schock Natural History Museum. The audio tour includes the specimen’s scientific name, a description of its biology, its habitat, its diet, and the forces of flight related to the specimen as well as its biomechanics.
They will be instructed to develop content which includes descriptive information about the biology of the specimen (science), the biomechanics used (engineering), dimensions of the specimen and its rate of speed (math). They will use technology in the process of creating and sending the audio files, and the museum will use technology to make the files available to visitors of the museum, both online and in person (technology). The goal is to have students engage in research on a STEM topic and then communicate their knowledge to a general audience using technology. We are investigating if, and to what extent, the project increases STEM literacy which is defined as a demonstrated ability to read STEM text, tables, and graphics with understanding, to evaluate the quality of the read information, to identify relevant information and incorporate that information in written or oral communication.
Categories: Faculty-Staff
-
Humanistic STEM: Blending Humanities and STEM to Increase Undergraduate Student Engagement, Knowledge, and Skills
PI Debra Bourdeau
NSF IUSE #2120807
Categories: Faculty-Staff
-
Developing Autonomous, Targeted Feedback in Precalculus
PI Darryl Chamberlain
The overriding goal of this project is to investigate student knowledge in a Precalculus course at ERAU-W in order to construct autonomous, targeted feedback for free-responses questions to enhance students' online learning. This will be accomplished by analyzing student responses to exam questions and interviewing students to probe how their mathematical conceptions correspond to their exam responses.
Categories: Faculty-Staff
-
A Boltzmann Simulator for Porous Media Flows
PI Leitao Chen
This project develops numerical simulations through parallel development of a Boltzmann model to capture and elucidate multiscale thermos-fluids behaviors in porous media, as well as the fluid-solid interactions.
To accurately simulate porous media flow problem, a kinetic model based on the Boltzmann equation (BE) was developed. Two primary reasons justified the choice of a BE-based approach over conventional Navier-Stokes (N-S) computational fluid dynamics (CFD) methods. First, the fluid flow within porous media often occurs in extremely narrow channels, representing high-Knudsen-number flow regimes. The Knudsen number (Kn), defined as the ratio of molecular mean free path to the smallest channel dimension, indicates that traditional N-S equations are physically inadequate for accurately describing these flow conditions. Conversely, BE-based models are well-established to yield physically accurate results for high-Kn flows. Second, from a computational standpoint, the BE inherently involves a simpler mathematical structure due to its linear advection term, substantially reducing computational overhead compared to the nonlinear N-S equations. This simplification significantly improves computational efficiency, especially critical for simulating flow within complex porous structures. To better capture the complex boundaries in porous media, a meshless discretization method of the BE has been developed in this project. This meshless approach entirely eliminates dependency on mesh generation, offering significant advantages in accurately simulating flow through porous media.Categories: Faculty-Staff
-
Project Global Officer
PI Aaron Clevenger
Project GO provide's overseas language instruction consisting of a minimum of 8 weeks and/or 150 contact hours (per grant program) to ROTC students nationwide with the goal of helping student to reach an ILR 1 proficiency level in a critical language: Mandarin Chinese in Taiwan, and Arabic in Jordan. All students should reach the objective of successfully applying the target language and cultural knowledge in actual communication with native speakers.
Categories: Faculty-Staff
-
Pure Water Project (PWP)
PI Marc Compere
Pure Water Project aims to improve the health and sustainability of individual communities in the Dominican Republic by installing a solar-powered water purification system. Embry‑Riddle students design, build, test and deliver a solar water purifier to carefully selected communities in the Dominican Republic and launch water selling businesses to benefit the local community’s health and economy.
Many in the Dominican Republic either pay for clean water or live with chronic intestinal sickness from contaminated water. Our solar water purifier is designed to provide clean drinking water for 500 adults per day. It generates 1000 gallons of clean water daily, which is enough to bottle and sell to the surrounding community.
This project is an ideal intersection of humanitarian aid and engineering. Our students design and build Embry‑Riddle's solar-powered water purifier for delivery to a carefully selected community each year. Students learn how solar power systems work with batteries, pumps and filters to construct a purifier that runs entirely from the sun. This project provides our students a global perspective and makes them better engineers through their efforts to achieve goals despite the dynamic, fluid environment in a different culture.
Categories: Faculty-Staff
-
Virtual Communities of Practice: Scaling, Belonging, and Effective Feedback
PI Cristina Cottom
CO-I Angela Atwell
CO-I Lisa Martino
CO-I Sara Ombres
The purpose of this research study is to extend CTLE-W's previous research on virtual faculty learning communities (VCoP) by testing a new VCoP for scalability with an expanded participation pool. This study also seeks to increase the sense of belonging among non-collocated faculty participants and to use the VCoP to provide continuing education on effective feedback practices.This VCoP and the research study will last for 8 weeks during the fall and spring. As part of the participation in the VCoP faculty will complete several online asynchronous activities using VoiceThread to discuss effective feedback practices, as well as a survey at the beginning and end of their VCoP experience.
This research study is an extension and expansion of the Center for Teaching and Learning Excellence’s existing VCoP. In 2016, our research team was awarded a grant from the Professional and Organizational Development (POD) Network to create a VCoP tailored specifically to online adjunct faculty, which yielded positive findings. In this current study, we were awarded additional grant funds from POD to build upon this success by designing a VCoP that recruits from our entire faculty pool in order to measure how it affects their sense of belonging and to test the framework we created for scalability. In addition, this collaborative experience will not focus on teaching in a single modality, but will instead address a shared practice that is relevant to all instructors. Regardless of modality, all instructors can improve effective feedback practices. Therefore, in this extended and expanded VCoP all faculty will have an opportunity to explore practices around effective feedback. This research will contribute to the existing literature by studying the scalability of VCoPs in faculty development settings and test how participation in VCoPs promotes belonging among dispersed faculty members teaching in multiple modalities. In addition, this study will also result in the production of documents that will facilitate future VCoP development and will generate valuable co-created knowledge on effective feedback. This study will employ a mixed-methods design that will use both quantitative and qualitative data to analyze the results of the survey. In addition, data will be collected from VoiceThread, facilitator reflections, observation notes, and artifact analysis.
Categories: Faculty-Staff
31-40 of 204 results