Embry-Riddle partners with private and public entities to assist in developing solutions to today's and tomorrow's aeronautical and aerospace problems. Here at the world's largest aviation-oriented university, our focus on applied research is unique.

Analyticity and kernel stabilization of unbounded derivations on C*-algebras

We first show that a derivation studied recently by E. Christensen has a set of analytic elements which is strong operator topology-dense in the algebra of bounded operators on a Hilbert space, which strengthens a result of Christensen. Our second main result shows that this derivation has kernel stabilization, that is, no elements have derivative eventually equal to 0 unless their first derivative is 0. As applications, we (1) show that a family of derivations on C*-algebras studied by Bratteli and Robinson has kernel stabilization, and (2) we provide sufficient conditions for when two operators which satisfy the Heisenberg Commutation Relation must both be unbounded.


Research Dates

to 09/15/2019

Categories: Faculty-Staff