Embry-Riddle partners with private and public entities to assist in developing solutions to today's and tomorrow's aeronautical and aerospace problems. Here at the world's largest aviation-oriented university, our focus on applied research is unique.

Unmanned Aircraft Systems (UAS) Application to Support Aircraft Rescue and Fire Fighting (ARFF)

PI Brent Terwilliger

This continuing research project features refinement of UAS application methods to support of ARFF responses. Previously, modeling and simulation, in combination with UAS attribute performance models, was implemented to better understand challenges, limitations, and potential benefits of UAS support. However, based on the findings and recommendations of the original inquiry, the research will be expanded to include examination of operator knowledge, skills, and abilities (KSAs), performance rating standards, and appropriate training requirements and delivery approaches.

Our team of researchers from Embry-Riddle Aeronautical University-Worldwide has been actively compiling published performance data associated with commercially-off-the-shelf (COTS) group 1 to 3 fixed-wing and vertical takeoff and landing (VTOL) unmanned aircraft systems (UAS) in an effort to develop statistical models of each category. The captured data, which includes maximum speed, cruise speed, endurance, weights, wind limitations, and costs, is used to calculate capabilities including range (one-way and return), time to objective, station keeping duration, and maneuver requirements. The benefit from assembling such a unified collection of information and the calculation of associated derived capabilities is that these models are anticipated to accurately reflect the capabilities, limitations, and considerations necessary in the assessment of such platforms for various applications and operating environments. These models will be available for combination with simulation or analysis frameworks to better assess end usability of these categories of aircraft for a significant number of applications including, emergency response, disaster relief, precision agriculture, security, tactical, communications, environmental study, infrastructure inspection, cargo delivery, and mapping/surveying.

Publications:

Terwilliger, B., Vincenzi, D., Ison, D., & Smith, T. (2015). Assessment of unmanned aircraft platform performance using modeling and simulation (paper no. 15006). In Volume 2015: Proceedings of the 2015 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). Arlington, VA: National Training and Simulation Association.

Terwilliger, B., Vincenzi, D., Ison, D., Herron, R., & Smith, T. (2015). UAS capabilities and performance modeling for application analysis.  In Proceedings of the Association for Unmanned Vehicle Systems International 42nd Annual Symposium. Arlington, VA: Association of Unmanned Vehicle Systems International.

Ison, D., Terwilliger, B., Vincenzi, D., & Kleinke, S. (2015). Airport bird activity - monitoring and mitigation: The unmanned aerial system (UAS) approach.Presented at the 2015 North American Bird Strike Conference, Montreal, QC.

Research Dates

02/01/2014

Researchers

  • Dahai  Liu
    Department
    School of Graduate Studies (SGS)
    Degrees
    Ph.D., University of Nebraska-Lincoln
  • Brent A. Terwilliger
    Department
    Department of Graduate Studies
    Degrees
    Ph.D., Northcentral University
    M.A.S., B.S., Embry-Riddle Aeronautical University
  • Dennis A. Vincenzi
    Department
    Department of Behavioral and Social Sciences
    Degrees
    Ph.D., B.S., University of Central Florida

Tags: aeronautics graduate studies college of aviation master of science in aeronautics master of science in occupational safety management worldwide campus

Categories: Faculty-Staff