Embry‑Riddle partners with private and public entities to assist in developing solutions to today's and tomorrow's aeronautical and aerospace problems. Here at the world's largest aviation-oriented university, our focus on applied research is unique.
Filter by



141-150 of 238 results

  • Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations

    PI Sirani Mututhanthrige Perera

    PI Arjuna Habarakada Madanayake

    PI Soumyajit Mandal

    Explosion of millimeter-wave (mm-wave) bandwidth opens up applications in 5G wireless systems spanning communications, localization, imaging, and radar. This project addresses challenges in mathematics, engineering, and science in developing efficient wideband beamformers based on sparse factorizations of the matrix called-delay Vandermonde matrices (DVM). The proposed highly integrated approach is attractive for mobile applications including 5G smart devices, the internet of things, mobile robotics, unmanned aerial vehicles, and other emerging applications focused on mm-waves.



    A multi-beam array receiver is deeply difficult to realize in integrated circuit (IC) form due to the underlying complexity of its signal flow graph. Through the proposed work, mathematical methods based on the theories of i) sparse factorization and complexity of the structured complex DVM with the introduction of a super class for the discrete Fourier transform(which is DVM), and ii) approximation transforms are proved to solve this problem.

    The resulting matrices are realized with multi-GHz bandwidths using analog ICs. The novel DVM algorithm solves the longstanding "beam squint" problem, i.e., the fact that the beam direction changes with input frequency, making true wideband operation impossible. Moreover, the proposed multi-beamforming networks in analog IC form will be realized efficiently while addressing precision circuit design, digital calibration, built-in self-test, etc. Besides scientific merits, both minority students and female students will be mentored to pursue careers in the STEM disciplines through the proposed project.


    This project was funded by the National Science Foundation (the division of Electrical, Communications, and Cyber Systems) with award numbers 1711625 and 1711395. 

    Categories: Faculty-Staff

  • A data analytics framework for the application of pedestrian dynamics to public health

    PI Sirish Namilae

    CO-I Mandar Kulkarni



    The central hypothesis of this NIH funded project is that combining location-based service (LBS) data with pedestrian dynamics modeling can uncover movement patterns of people in complex situations with many public health applications. In Aim 1, we will develop an application-agnostic pedestrian dynamics modeling framework that assimilates LBS data. We will compare our approach to methods that do not utilize LBS in order to evaluate accuracy of human movement across multiple scenarios. In Aim 2, we will apply the pedestrian movement and interaction information to a variety of public health domains. These include: viral infection spread at local and global scales, enhancing walkability for active aging, and safe evacuation of the elderly. Finally, in Aim 3, we will translate our pedestrian dynamics modeling framework into public health practice. We will provide our platform to different stakeholders and obtain feedback on user satisfaction to improve the system design.

    Categories: Faculty-Staff

  • Nanoscale Design of Interfacial Kinematics in Composite Manufacturing

    PI Sirish Namilae

    CO-I Marwan Al-Haik

    This NSF-funded research will elucidate the role of interfacial kinematics and energetics in the evolution of inter-ply interfaces in composite structures during manufacturing. The research team will develop a novel experimental method for in-situ characterization of surface and interface deformations during composite processing, utilizing a customized commercial composite autoclave with a digital image correlation system. The surface strain and displacement measurements will be combined with ex-situ X-ray tomography and thermal characterization to map the interfacial thermomechanical response as a function of design and processing parameters. Additionally, the interfacial behavior will be engineered through the rapid and controlled growth of ZnO nanowires on carbon fibers to create a nanoscale interfacial component that increases the fiber bending resistance and creates an interlocking effect at the interfaces to mitigate defects propagation. The experimental research will be complemented by molecular dynamics simulations of the sliding of amorphous polymer interfaces and mesoscale simulation of flow in porous media. This comprehensive approach of in-situ characterization, interface design, and modeling will lead to a fundamental understanding of the ply movement during composite manufacturing and development of methods to reduce the occurrence of processing-induced defects.



    Categories: Faculty-Staff

  • Software Infrastructure For Analysis of Infection Propagation Through Air Travel

    PI Sirish Namilae

    This NSF funded  project seeks to develop a novel software that will provide a variety of pedestrian dynamics models, infection spread models, as well as data so that scientists can analyze the effect of different mechanisms on the spread of directly transmitted diseases in crowded areas. The initial focus of this project is on air travel. However, the software can be extended to a broader scope of applications in movement analysis and epidemiology, such as in theme parks and sports venues. Development of the proposed software will involve several innovations. It will include a novel phylogeography model that links fine-scale human movement data with virus genetic information to more accurately model geographic diffusion of viruses. New models for pedestrian movement will enable modeling of complex human movement patterns. A recommendation system for the choice of pedestrian dynamics models and a domain specific language for the input of policies and human behaviors will enhance usability by researchers in diverse fields. Community building initiatives will catalyze inter-disciplinary research to ensures the long-term sustainability of the project through a critical mass of contributors and users.



    Categories: Faculty-Staff

  • Experimental Testbed for the Validation of Autonomous ISAM/OSAM Systems

    PI Morad Nazari

    CO-I Kadriye Merve Dogan

    CO-I Thomas Lovell

    The ability to validate individual hardware and software components of these technologies on a large scale is still in its early stages. Thus, the goal of this research is to establish an effective experimental testbed for the validation of autonomous in-space servicing and maintenance (ISAM) / on-orbit servicing and maintenance (OSAM) systems.


    A new era of affordable space flight, satellite refueling, on-orbit inspection, orbit transfer and end-of-life servicing has begun as a result of the space industry's continued focus on safe, resilient and adaptable space vehicles. These developments have laid the groundwork for assembly and manufacturing in orbit or space for potential use in active debris removal, reuse and recycling of materials. Advanced navigation and control technologies are required to ensure and lengthen the mission life cycles of these orbital assets, which include launch vehicles, satellites and space stations. Orbit/attitude determination, relative motion, robot manipulator kinematics and spacecraft rendezvous/docking can benefit from new advances in geometric mechanics Udwadia-Kalaba, adaptive control, learning, sensor fusion, computer vision and data communication. These efforts aim to equip future enterprises with the ability to perform in-space servicing and maintenance (ISAM) and on-orbit servicing and maintenance (OSAM) of failed or damaged space assets, as well as in-space manufacturing and platform assembly. However, the ability to validate individual hardware and software components of these technologies on a large scale is still in its early stages. Thus, the goal of this research is to establish an effective experimental testbed for the validation of autonomous ISAM/OSAM systems.

    Categories: Faculty-Staff

  • Flexible Body Control Using Fiber Optic Sensors, Florida Space Grant Consortium

    PI Morad Nazari

    CO-I Daewon Kim

    ​This project would build on previous research that developed the dynamics formulation and control of a rigid-flexible system.

    This project would build on previous research that developed the dynamics formulation and control of a rigid-flexible system. A cantilevered beam attached to a rotating central body is considered and analyzed through the finite element method. A set of matrix differential equations are obtained to describe the dynamic behavior of the system, and a control law based on a Lyapunov function is obtained and applied to the system. The development of this dynamics formulation and control also considers the rigid-flexible coupling present in the system. The control law is designed such that the system can achieve and maintain a set of desired states for the central rigid body and flexible structure. The experimental measurements obtained from the implementation of FOS sensors on the flexible body and inertial sensors on the rigid body will be utilized as the input in this control design. The research portion of the project is anticipated to require one or two graduate student research assistants and a part-time academic advisor over a one-year period.

    Categories: Faculty-Staff

  • Reconfigurable Guidance and Control Systems for Emerging On-Orbit Servicing, Assembly and Manufacturing (OSAM) Space Vehicles

    PI Morad Nazari

    CO-I Kadriye Merve Dogan

    In this project, the ControlX team with ERAU partnership will develop agile, reconfigurable, and resilient dynamics and G&C algorithms for on-orbit servicing to capture a broad set of OSAM applications such as remediation of resident space object (RSO) (e.g., via de-orbiting, recycle, end-of-life servicing, satellite refueling, etc.) using effective tools and methods involving geometric mechanics, constrained G&C synthesis, and reconfigurable robotic manipulators (RRMs). 



    Dynamic response to emergent situations is a necessity in the on-orbit servicing, assembly and manufacturing (OSAM) field because traditional on-orbit guidance and control (G&C) cannot respond efficiently and effectively to such dynamic situations (i.e., they are based on either constant mass or diagonal matrix of inertia). In these circumstances, the current challenge is to develop modeling strategies and control systems that exhibit intelligence, robustness and adaptation to the environment changes and disturbances (e.g., uncertainties, constraints and flexible dynamics). Note that the current state-of-the-art methods do not offer a reliable, accurate framework for real-time, optimal accommodation of constraints in the system dynamics that account for orbital-attitude coupling in the motion of the bodies without encountering singularity or non-uniqueness issues. In this project, the ControlX team with ERAU partnership will develop agile, reconfigurable, and resilient dynamics and G&C algorithms for on-orbit servicing to capture a broad set of OSAM applications such as remediation of resident space object (RSO) (e.g., via de-orbiting, recycle, end-of-life servicing, satellite refueling, etc.) using effective tools and methods involving geometric mechanics, constrained G&C synthesis, and reconfigurable robotic manipulators (RRMs). 

    The proposed work in this Phase I includes reconfigurable systems for on-orbit servicing, assembly and manufacturing with learning control methods that minimize tracking error of the end-effector of the RRM in the presence of uncertainties, optimize configuration and accommodate constraint-changing scenarios. Our developments will avoid singularity; not rely on the concept of costates or Lagrange multipliers that are restrictive; handle system uncertainties while enforcing the constraints; use RRMs in different tasks (recycle, debris removing, maintenance, etc.); not need in sensors or exact model knowledge for robotic arms. Specifically, constrained space vehicle control (predicated on Udwadia and Kalaba (UK) formalism) will offer not only accurate and resilient design but also reconfigurability in that G&C algorithms can easily be modified to suit a wide spectrum of OSAM applications. ControlX team will also consider the feasibility of hardware implementation. The selection of sensors, actuators and onboard computers will be an important trade-off between among size, weight, and power (SWaP) constraints, reliability, and computing performance. A real-time operating system (RTOS) is planned to meet timing and memory management constraints, partitioning hardware resources to control software application interactions. An analysis suite for the autonomous system implementation, based on system modeling and learning techniques, will provide onboard analysis, enabling decision-making as to whether the system can continue to meet mission requirements.

    Categories: Faculty-Staff

  • Aviation Management Education Study (AMES)

    PI Jason Newcomer

    CO-I James Marion

    CO-I Matthew Earnhardt

    The Aviation Management Education Study (AMES) is a longitudinal effort consisting of a series of research papers covering various facets of aviation education as it pertains to managers in the field and hiring of industry professionals.



    In the last 34 years, corporate America and the aviation professions have changed due to (a) increased air travel, (b) outsourcing functions, (c) aviation research, (d) federal regulation, and (e) the changed U.S. economy (Katkin, et al., 2013; Mootien, Warren, Morris, & Enoch, 2013; Quinlan, Hampson, & Gregson, 2013; Rango & Laliberte, 2010). The specific business problem is the lack of current, correlated demographic data of aviation managers, as well as any resultant significance testing of the aforementioned data to determine if there are necessary academic pre-requisites to obtaining management positions in aviation.

    Categories: Faculty-Staff

  • Cross-Scale Wave Coupling Processes in Kelvin-Helmholtz Structures

    PI Heidi Nykyri

    Project investigates cross-scale wave coupling processes and their role on ion heating, mixing and diffusion.

    One of the pending problems in collisionless plasmas is to understand the plasma heating and transport across three fundamental scales: fluid, ion and electron. The plasma inside Earth’s magnetotail plasma sheet is ~50 times hotter than in the magnetosheath. Furthermore, the specific entropy increases by two orders of magnitude from the magnetosheath to the magnetosphere, which is a signature of a strong non-adiabatic heating. Also, the cold component ions are hotter by ~30 % at the dawnside compared to those measured on the duskside. Our recent statistical study using THEMIS data indicates that the magnetosheath seed population is not responsible for this asymmetry so additional physical mechanisms at the magnetopause or plasma sheet must be at work to explain this asymmetric heating. Recent works suggest that dawn-flank magnetopause boundary is more prone to the fluid-scale Kelvin-Helmholtz instability (KHI) as well as to the ion-scale electromagnetic wave activity, which may help explain the observed plasma sheet asymmetry. Project uses numerical simulations, plasma theory and spacecraft observations to understand relation of small-scale waves to large-scale velocity driven modes and evaluate their role in mixing, diffusion, and heating of ions.

    Categories: Faculty-Staff

  • Experimental Identification of Plasma Wave Modes in Vicinity of KH Vortices and in Plasma ’Mixing’ Regions in Low Latitude Boundary Layer (Ion scales)

    PI Heidi Nykyri

    Project uses Cluster spacecraft data to identify ion-scale waves within Kelvin-Helmholtz waves.

    Project uses Cluster spacecraft data to identify ion-scale waves within Kelvin-Helmholtz waves.

    Categories: Faculty-Staff

141-150 of 238 results