161-170 of 252 results
-
NSF REU Site: Cybersecurity Research of Unmanned Aerial Vehicles
PI Laxima Niure Kandel
CO-I M. Ilhan Akbas
This funding institutes a Research Experience for Undergraduates (REU) Site at Embry‑Riddle Aeronautical University (ERAU). Each year, over the summer, ten highly motivated undergraduates will conduct an intense 10-week Unmanned Aerial Vehicles (UAV) cybersecurity research program complemented by professional development activities that prepare them for future cybersecurity careers and graduate schools.
This funding institutes a Research Experience for Undergraduates (REU) Site at Embry‑Riddle Aeronautical University (ERAU). Each year, over the summer, ten highly motivated undergraduates will conduct an intense 10-week Unmanned Aerial Vehicles (UAV) cybersecurity research program complemented by professional development activities that prepare them for future cybersecurity careers and graduate schools. Students will research existing UAV cyber threats and mitigation strategies and explore new techniques and algorithms to safeguard UAV systems. The REU program will focus on providing unparalleled opportunities for undergraduate students, especially those from underrepresented and minority groups and from institutions with limited resources, by engaging them in real-world cybersecurity research of UAVs. Through small-group, high-quality mentoring practices, the REU training will not only aid in enhancing the safety and security of UAVs in personal and commercial applications but will also build research confidence among REU participants.
The overall objective of this project is to immerse undergraduate students in research-intensive training in the cybersecurity field and encourage them to think creatively and independently through hands-on project activities. REU participants will be engaged in faculty-led projects such as UAV cyber-attacks, UAV cyber defense mechanisms, privacy protection methods for UAV communications, and Physical Layer-based cybersecurity. They will participate in activities that range from literature reviews, technical seminars, and workshops to the preparation, presentation, and dissemination of research findings. The three major goals of the REU Site are: (1) to expose undergraduate students to a variety of cybersecurity projects that are bound to build the interest, skills, and knowledge necessary to pursue cybersecurity careers; (2) to increase the number of underrepresented undergraduates in cybersecurity and STEM fields through diversity recruitment emphasis, and (3) to provide undergraduate students with strong professional skills for their future careers and graduate schools. The REU Site will leverage ERAUs? state-of-the-art facilities, research labs, and faculty expertise to promote interest in cybersecurity and develop research skills of the undergraduate students which, in turn, will contribute towards cybersecurity education, training, and workforce development.
Categories: Faculty-Staff
-
Cross-Scale Wave Coupling Processes in Kelvin-Helmholtz Structures
PI Heidi Nykyri
Project investigates cross-scale wave coupling processes and their role on ion heating, mixing and diffusion.
One of the pending problems in collisionless plasmas is to understand the plasma heating and transport across three fundamental scales: fluid, ion and electron. The plasma inside Earth’s magnetotail plasma sheet is ~50 times hotter than in the magnetosheath. Furthermore, the specific entropy increases by two orders of magnitude from the magnetosheath to the magnetosphere, which is a signature of a strong non-adiabatic heating. Also, the cold component ions are hotter by ~30 % at the dawnside compared to those measured on the duskside. Our recent statistical study using THEMIS data indicates that the magnetosheath seed population is not responsible for this asymmetry so additional physical mechanisms at the magnetopause or plasma sheet must be at work to explain this asymmetric heating. Recent works suggest that dawn-flank magnetopause boundary is more prone to the fluid-scale Kelvin-Helmholtz instability (KHI) as well as to the ion-scale electromagnetic wave activity, which may help explain the observed plasma sheet asymmetry. Project uses numerical simulations, plasma theory and spacecraft observations to understand relation of small-scale waves to large-scale velocity driven modes and evaluate their role in mixing, diffusion, and heating of ions.
Categories: Faculty-Staff
-
Experimental Identification of Plasma Wave Modes in Vicinity of KH Vortices and in Plasma ’Mixing’ Regions in Low Latitude Boundary Layer (Ion scales)
PI Heidi Nykyri
Project uses Cluster spacecraft data to identify ion-scale waves within Kelvin-Helmholtz waves.
Project uses Cluster spacecraft data to identify ion-scale waves within Kelvin-Helmholtz waves.Categories: Faculty-Staff
-
Statistical correlation study between solar wind, magnetosheath and plasma sheet properties
PI Heidi Nykyri
CO-I Xuanye Ma
Statistical study of the solar wind, magnetosheath, and magnetospheric plasma properties usinng 8+ years of THEMIS data.
The study will utilize recently developed statistical tool developed under Nykyri's NSF CAREER grant to present 8+ years of THEMIS spacecraft data in the coordinate system that takes into account the motion of the magnetopause and bow shock and will organize THEMIS observations into spatial bins with respect to physical boundaries under prevailing solar wind conditions. The study will address how do the plasma sheet properties such as number density, temperature, electron to ion temperature ratio and specific entropy vary during a) Parker-Spiral, Ortho-parker spiral, Northward and Southward IMF, and b) during high and slow solar wind speed, and how are these correlated with corresponding magnetosheath properties?
Categories: Faculty-Staff
-
NSF Career Award: Effects of Magnetosheath properties on the dynamics and plasma transport produced by the Kelvin-Helmholtz Instability and on the Plasma Sheet Anisotropies
PI Heidi Nykyri
Project investigates impact of magnetosheath properties on Kelvin-Helmholtz instability
The magnetosheath processes will be studied by doing a statistical study of the magnetosheath properties using THEMIS data and by utilizing global hybrid (fluid electrons, particle ions) simulations. In addition, the MHD-scale KHI will be compared with hybrid and particle simulations of the instability.
Categories: Faculty-Staff
-
Turbulence and Structure in the Magnetospheric Cusps: Cluster spacecraft observations
PI Heidi Nykyri
Project analyzes the structure, origin of fluctuations and high-energy particles in the high-altitude cusp regions
Project uses Cluster data and high-resolution local 3-D MHD simulations with test particles to determine the structure and origin of high-energy particles in the high-altitude cuspCategories: Faculty-Staff
-
Magnetospheric Multi-Scale (MMS) Observations and simulations of high-energy electrons in the dayside magnetosheath
PI Heidi Nykyri
CO-I Brandon Burkholder
CO-I Xuanye Ma
The key objective of this study is to better understand the source and cause of high-energy electrons observed by the MMS in the dayside magnetosheath.
The key objective of this study is to better understand the source and cause of high-energy electrons observed by the MMS in the dayside magnetosheath. The Magnetospheric Multi-Scale (MMS) mission is a four-spacecraft constellation orbiting in formation around Earth with a main goal to study the microphysics of magnetic reconnection at the dayside magnetopause. Recent MMS observations showed high energy (40 keV) electrons leaking into the magnetosheath. However, the dominant leaking mechanism has not been fully understood. Global Lyon-Fedder-Mobarry (LFM) with test particle simulations suggest that low latitude reconnection and the nonlinear Kelvin-Helmholtz (KH) instability can cause the leak of high energy electrons into the magnetosheath. But it is important to notice that many of the electrons leaking events were observed close to Fall Equinox when the MMS orbit has a significant y-component and the z_GSM coordinate can be substantial (up to ~7 R_E). Therefore, MMS high-energy electron events may have a high-latitude source. For instance, it is well demonstrated that magnetic reconnection between the Interplanetary Magnetic Field (IMF) and Earth's magnetic field surrounding the cusps can lead to the formation of cusp diamagnetic cavities (Nykyri et al., JGR 2011a,b; Adamson et al., angeo 2011), extended regions of decreased magnetic field, which can be filled with higher energy (>30 keV) electrons, protons and O+ ions. Cluster observations revealed 90-degree pitch angle electrons in the cavity, strongly suggestive of a local acceleration mechanism (Walsh, angeo 2010; Nykyri et al, JASTP 2012). Test particle simulations in a high-resolution 3D cusp model uncovered that trapped particles in the diamagnetic cavities can be accelerated when their drift paths go through regions of "reconnection quasi-potential" (Nykyri et al, JASTP 2012). Once the IMF orientation changes it is possible for trapped particles in the cavity to end up into the loss cone and "leak out" of the cavity. A systematic approach to our science objective addresses the following compelling science questions by synergy using MMS observational data and numerical simulation.
Categories: Faculty-Staff
-
Science and engineering proof of concept study for the Next generation Space Weather Prediction mission and space weather model development
PI Heidi Nykyri
Project analyzes astrodynamics (transfer trajectories) and spacecraft constellation stability about all Lagrange points for Mercury, Venus, Earth, Mars system for the "next generation" space weather prediction mission, and develops a solar wind model which will use data from this mission
Project analyzes astrodynamics and constellation stability for the "next generation" space weather prediction mission, and develops a solar wind model which will use data from this missionCategories: Faculty-Staff
-
On The Origin and Transport of Energetic Particles
PI Heidi Nykyri
CO-I Xuanye Ma
Understanding the properties, origin and dynamics of energetic particles in the solar wind and magnetosphere is crucial for safe unmanned and manned space operations. This project will unravel the birth-mechanism of the source population of the Earth's radiation belts.
Understanding the properties, origin and dynamics of energetic particles in the solar wind and magnetosphere is crucial for safe unmanned and manned space operations. Therefore, energetic particles have attracted attention from the space physics community for decades. However, different regions and energy ranges of energetic particles may have their own unique origin and role for magnetospheric dynamics, which have not been fully explored and deserve to be investigated case by case. For instance, MMS recently observed dispersionless micro-injections in the 30-300 keV electrons accompanied by strong anisotropic ion temperature at the high-latitude magnetospheric boundary layer in the vicinity of the exterior southern cusp. Due to the different magnetic field geometry, these high-latitude microinjections could have a totally different origin than the typical low-latitude microinjections. Because this region is close to the radiation belts, ionosphere, and magnetosheath, these high-latitude microinjections could be the ~ tens to hundreds of keV seed population of the radiation belts, as well as leak into the ionosphere or into the magnetosheath. This project will unravel the birth-mechanism of the source population of the Earth's radiation belts.Categories: Faculty-Staff
-
Experimental Identification of Plasma Wave Modes
PI Heidi Nykyri
CO-I Rachel Rice
Project uses MMS data to identify plasma wave modes contributing to the heating of the magnetospheric boundary layer
Projects uses single and multi-spacecraft data-analysis techniques to experimentally identify various plasma modes at different frequencies and assess their contribution to plasma heatingCategories: Faculty-Staff
161-170 of 252 results