191-200 of 245 results
-
A Curriculum Wide Software Development Case Study
PI Massood Towhidnejad
CO-I Thomas Hilburn
This NSF funded research develops case studies of software development for use in software engineering and computing instruction.
Products include realistic projects, complete artifacts throughout the software development life cycle, case studies decoupled from a particular textbook, and case modules designed with varying complexity allowing for use in multiple classes throughout undergraduate and graduate curricula.Categories: Faculty-Staff
-
Encouraging Students to Pursue an Engineering Education and Career
PI Massood Towhidnejad
This NSF-sponsored project provides scholarship for engineering students pursuing degrees in computer science, computer engineering, electrical engineering, mechanical engineering and software engineering.
Working closely with faculty and student mentors, scholarship recipients are involved in multi-disciplinary projects involving unmanned and autonomous systems throughout their four years of undergraduate study.Categories: Faculty-Staff
-
From Middle School to Industry Vertical Integration to Inspire Interest in Computational Thinking
PI Massood Towhidnejad
CO-I Thomas Hilburn
While students typically do not see immediate advantages of the topics being studies, top down integration exposes students to larger, more complex projects, giving them better appreciation for topics as they realize the “big picture.”
Funded by the National Science Foundation, this research seeks to vertically integrate software development best practices from industry to graduate, undergraduate, high school, and middle school academic programs, with the intention of increasing student interest in computing and computational thinking.Categories: Faculty-Staff
-
Big Data Analytics for Injury Data
PI Dothang Truong
This project leverages big data analytics tools for the exploration and transformation of injury data for a major Part 121 carrier with the goal of predictive modeling. This project offers graduate students an opportunity to work with a substantial airline dataset under the supervision of a faculty member. The outcomes have the potential to lead to more extensive future projects in the realm of big data analytics. (This project is under strict NDA).
Categories: Faculty-Staff
-
Pilot’s Willingness to Operate in Unmanned Aircraft System Integrated Airspace
PI Lakshmi Vempati
PI Scott Winter
The interest in Unmanned Aircraft Systems (UAS) use for private, civil, and commercial purposes such as package delivery, inspection, surveillance, and passenger and cargo transport has gained considerable momentum. As UAS infiltrate the National Airspace System (NAS), there is a need to not only develop viable, safe, and secure solutions for the co-existence of manned and unmanned aircraft, but also determine public acceptance and pilot’s willingness to operate an aircraft in such an integrated environment. Currently there is little or no research on pilot’s perceptions on their willingness to operate an aircraft in UAS integrated airspace and airports.
The purpose of this study was to determine what effect the type of UAS integration, the type of UAS operations, and the airspace classification will have on pilot’s perspectives and willingness to operate an aircraft in UAS integrated airspace and airport environment. This study surveyed the eligible pilot population in hypothetical scenarios using convenience sampling to measure their willingness to operate an aircraft in UAS integrated airspace and airports using the Willingness to Pilot an Aircraft Scale, which has been shown to be valid and reliable by Rice, Winter, Capps, Trombley, Robbins, and Milner (2020). A mixed factorial design was used to study the interaction effects between the independent variables and the effects on the dependent variable, i.e., willingness to pilot an aircraft.
The results of the mixed analysis of variance (ANOVA) indicated a significant interaction between type of UAS integration and airspace classification. Overall willingness decreased with airspace and differences in willingness to pilot an aircraft were based on segregated and integrated operations. The average pilot’s willingness to pilot an aircraft score differed from the highest score being for Class B, decreasing with decreasing airspace classes, with the lowest being for Class G.
Analysis of pilot perspectives collected through open ended questions using text-mining techniques showed agreement with mixed ANOVA analysis that the primary factor in the pilot’s perception was airspace. Key concerns voiced by the pilots were situation awareness, risk and safety of operations, aircraft certification and airworthiness, and operator experience and regulatory conformance. The most positive sentiment was observed among pilots presented with the hypothetical scenario of fully autonomous UAS operations in a segregated environment. Findings from the study could aid regulators in developing better policies, procedures, integration solutions, improved training, and knowledge sharing.
Categories: Graduate
-
Developing Artifact Peer Review Assignment Methodologies to Maximize the Value of Peer Review for Students
PI Matthew Verleger
This engineering education research project seeks to develop a proof-of-concept peer review matching algorithm and demonstrate if it is a valuable and viable methodology for conducting peer review. Peer review is a proven method that has positive impact on student learning. The project will test the algorithm on Model Eliciting Activities in the engineering classroom, and investigate how changing peer review can affect student learning.
The broader significance and importance of this project is the transformative potential of improving peer review processes, since peer review is used throughout STEM and medical fields. Thus this preliminary investigation can extend outside the realm of improving student learning. This project overlaps with NSF's strategic goals of transforming the frontiers through preparation of an engineering workforce with new capabilities and expertise. Additionally NSF's goal of innovating for society is enabled by supporting the development of innovative learning systems.
- Learn more about research projects in the Daytona Beach College of Engineering and its Department of Engineering Fundamentals.
Categories: Faculty-Staff
-
Platform for Investigating Concept Networks on the Instrumentality of Knowledge (PICNIK)
PI Matthew Verleger
This engineering education research project seeks to develop a concept network for engineering and a platform for helping students identify how concepts are connected across a curriculum. The goal is to better understand and improve how students value the concepts being taught throughout their education.
By data mining course materials (i.e., textbooks, course notes, syllabi, video transcripts, websites, etc.), a concept network can be developed for that course. With each additional resource, the network connectedness become more fully representative. By mapping materials from courses throughout a curriculum, and then overlaying the resulting map on a degree plan of study, students will be able to better identify and value how concepts being taught today are connected and used throughout the rest of their education. For instructors, curricular redesign becomes significantly easier, as they will be able to more fully contextualize how other courses depend on their material.
Categories: Faculty-Staff
-
Bayesian Analysis of Stellar Evolution
PI Theodore von Hippel
Bayesian Analysis of Stellar Evolution is an international collaboration studying stellar evolution with an emphasis on stellar ages. We also develop and support a Bayesian software suite that recovers star cluster and stellar parameters from photometry, currently called BASE-9.
BASE-9 is useful for analyzing single-age, single-metallicity star clusters, binaries, or single stars, and for simulating such systems. BASE9 uses Markov chain Monte Carlo to estimate the posterior probability distribution for the age, metallicity, distance modulus, and line-of-sight absorption for a cluster, and for the mass, binary mass ratio, and cluster membership probability for every cluster member.Categories: Faculty-Staff
-
Small UAS (sUAS) Mid-Air Collision (MAC) Likelihood
PI Ryan Wallace
CO-I Dothang Truong
CO-I Scott Winter
CO-I David Cross
This research focuses on sUAS MAC likelihood analysis with general aviation (GA) and commercial aircraft. Because severity research varies based on where a collision occurred on a manned aircraft, this likelihood research will not only look at the probability of a MAC, but also the likelihood of colliding with different parts of a manned aircraft.
Complete Mid-Air Collision (MAC) risk assessments require estimates of both collision severity and collision likelihood. This research focuses on sUAS MAC likelihood analysis with General Aviation (GA) and commercial aircraft. Because severity research varies based on where a collision occurred on a manned aircraft, this likelihood research will not only look at the probability of MAC but also the likelihood of colliding with different parts of a manned aircraft.
Categories: Faculty-Staff
-
Best practices in teaching statistics and research methods within an aviation curriculum
PI Robert Walton
Student learning assessment is necessary at most universities, the question is whether or not student learning assessment though the use of tests can be turned into a less anxiety-provoking experience and, most ideally, into a summative learning experience for students. Using a three-test format student assessment this research examined an alternate testing paradigm, aiming directly at anxiety associated with tests and grades.
This research will examine an alternate testing paradigm, aiming directly at anxiety associated with tests and grades. The research question for this study is whether or not student assessment though the use of a traditional testing format could be made less anxiety provoking and, most ideally, be turned into a teaching/learning experience for students. Students in a statistics course will be assessed using a three-test format. Tests will be scored immediately after completion, with the student present and incorrect responses explained. The student can then retake an alternate exam and will receive the highest grade on any version of the test they take. Data will be examined for statistically-significant indicators from version 1, to 2, to 3 of the examinations.Categories: Faculty-Staff
191-200 of 245 results