241-250 of 263 results
-
). The Engagement of Non-Traditional Students in Online Engineering Pathways.
This project aims to serve the national interest by identifying best practices for improving the persistence and advancement of adult and veteran students pursuing online engineering degrees. Through the introduction of peer leaders and synchronous recitation sessions, students will receive additional support beyond what is traditionally offered in online modalities. Moreover, peer-led team learning environments create safe havens where foundational math and engineering principles may be explored outside the instructor-student hierarchical structure. Learning from fellow students who recently completed the course can provide motivation, context, and example for undergraduate students, especially those from adult and veteran populations who may not be comfortable with online learning or perhaps have been out of the formal academic environment for some time.
The intent of the study is to inform instructional practice that other institutions can leverage to better support non-traditional students in online programs. The project will produce a peer leader training curriculum and peer-led team learning activities for introductory engineering courses including statics, aerodynamics, and digital circuits. In identifying social and academic factors under which students’ experiences in peer-led team learning produce better academic outcomes, this project hopes to advance pedagogical approaches for additional underrepresented populations and contribute to the increasing breadth of knowledge for the online education community.
Peer-led team learning has proven to be effective in face-to-face classroom settings. The scope of the current project is to implement similar structural and pedagogical practices through development of a sustainable online model that is transferable to other institutions. Goals for this project include increasing commitment to online engineering pathways, improving student persistence and advancement in online engineering programs, and identifying and mitigating cultural and structural barriers associated with non-traditional student populations. Evidence from the study will be collected from students enrolled across multiple sections of introductory engineering courses and evaluated against control sections in developing a comprehensive set of best practices. Results will advance our understanding of peer-led team learning activities’ ability to produce both statistically significant and substantially greater gains in non-traditional students’ academic performance and identity development as part of the engineering community. The EHR program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.Categories: Faculty-Staff
-
OPTIMIS: Optimizing Human Performance in the Air Transportation Sector by Integrating Human Factors into Homeland Security Deterrence and Detection Procedures and Training: System Interfaces and Behavioral Screening at Security Checkpoints (Embry‑Riddle Aeronautical University Undergraduate Research Collaborative Grants Program 2023)
This project addresses human performance optimization in commercial air transportation by integrating human factors principles into homeland security deterrence and detection tasks, procedures, training, and technology interfaces at airport security checkpoints.
9/11 occurred as terrorists overcame security screening procedures. Subsequently, the Transportation Security Administration (TSA) was created as a component of the U.S. Department of Homeland Security founded 20 years ago. In today’s persistent threat environment, strengthening the airport security screening checkpoint with its holistic human, social, and technological ecology in mind is an ongoing challenge. This project addresses human performance optimization in commercial air transportation by integrating human factors principles into homeland security deterrence and detection tasks, procedures, training, and technology interfaces at security checkpoints. The project takes a systemic approach in identifying behavioral risk vulnerabilities of airport security screening checkpoints associated with human error in order to: (a) close effectiveness and efficiency gaps in user interaction with systemic elements and (b) enhance human reliability as a measure to improve overall system performance and hence air transportation security. The focus is on how well system components are designed to interface with human physiological and cognitive abilities and limitations. System components include equipment and technology, tasks, environment, and organizational elements. Organizational elements include scheduling/shiftwork, training, culture, communication, procedures, etc. Expected outcomes include focused controls associated with fatigue/circadian dysrhythmia and development of training materials for improved recognition of behavioral threat risks indicators.Categories: Faculty-Staff
-
Analyticity and kernel stabilization of unbounded derivations on C*-algebras
We first show that a derivation studied recently by E. Christensen has a set of analytic elements which is strong operator topology-dense in the algebra of bounded operators on a Hilbert space, which strengthens a result of Christensen. Our second main result shows that this derivation has kernel stabilization, that is, no elements have derivative eventually equal to 0 unless their first derivative is 0. As applications, we (1) show that a family of derivations on C*-algebras studied by Bratteli and Robinson has kernel stabilization, and (2) we provide sufficient conditions for when two operators which satisfy the Heisenberg Commutation Relation must both be unbounded.
Categories: Faculty-Staff
-
Predictive Analytics for Unmanned Aerial Systems Deployment
This research covers unmanned systems deployment in uncertain adversarial environments. Resilient logistics operations call for a holistic and crosscutting approach to proactively address both real-time and persistent adversarial events in several operational areas to outfit mobility platforms, networks, and C2 digital twin to support continued uninterrupted operations.
This research covers unmanned systems deployment in uncertain adversarial environments. Resilient logistics operations call for a holistic and crosscutting approach to proactively address both real-time and persistent adversarial events in several operational areas to outfit mobility platforms, networks, and C2 digital twin to support continued uninterrupted operations. The research proposes the development of robust mobility platforms for UAV deployment and remote maintenance in adversarial environments with predictive logistics guarantees, including platform reliability evaluation, and remote inspection.
Categories: Faculty-Staff
-
Pilot Response to Cybersecurity Events
The first research uses the pilot cybersecurity event and risk assessment station located in the Cybersecurity Engineering Lab (LB 131).
The first research uses the pilot cybersecurity event and risk assessment station located in the Cybersecurity Engineering Lab (LB 131). The station includes a Force Dynamics 401CR flight simulator and a digital twin for scenario development and analysis, and it allows for human systems research on aircraft crew response to external stimuli. The research results are intended to be used to build a training module for aircraft pilots.
Categories: Faculty-Staff
-
Design Verification of Airborne AI/ML Systems
The verification process of safety-critical systems must ensure system design performs all intended functionality within the required output ranges and safety limits. It must also ensure that no intended functionality is present having a risk larger than the stated development assurance level.
The verification process of safety-critical systems must ensure system design performs all intended functionality within the required output ranges and safety limits. It must also ensure that no intended functionality is present having a risk larger than the stated development assurance level. The objective of the AI/ML-based system is to assist with the detection of unintended behavior during operations that results in enhanced online hazard analysis and risk mitigation. Validation and verification techniques must be developed for these systems with the future goal of adopting them in airborne operations.
Categories: Faculty-Staff
-
Simulation Based Inquiry Oriented Linear Algebra
CO-I Ashish Amresh
Games that teach introductory concepts in linear algebra such as vectors, span and dependence are created to be used by instructors in an undergraduate class.
A well-established National workforce need and critical challenge is to recruit and train students in Science, Technology, Engineering and Mathematics (STEM) fields. Since mathematics is a fundamental part of all STEM disciplines, success of undergraduate students in mathematics is a crucial ingredient to address this challenge. Linear algebra is a vital transition course for students in the STEM disciplines because of its unifying power within mathematics and its applicability to areas outside of mathematics. Accordingly, effective instruction at this stage in students' development is paramount. The focus of this project will be to improve teaching, learning, and student success in linear algebra by incorporating a blending of technology and several learning theories and applications to lead to new research results and production of curriculum resources. This project will leverage the investigators' previous research and curriculum development in Inquiry-Oriented Linear Algebra (IOLA) and expertise in Technology Based Learning to explore the unification of curriculum design and technology design theories and practices.
The goals of the project are to: (1) create a digital platform that will equip students with a virtual experience of a version of the IOLA curriculum; (2) document the affordances and constraints for learning using a game platform (IOLA-G) in comparison to face-to-face instruction by experienced IOLA instructors; (3) compare different digital gaming formats to determine which are most conducive to inquiry-oriented learning; and (4) use the knowledge gained from (1), (2), and (3) to improve student learning through the developed technology, and, reflexively, to enhance the existing IOLA curriculum and teacher support resources. The project team will investigate students' mathematical activity and learning while the students are engaged with the digital platform and will use this insight to inform further refinement of design. Building on prior research efforts in the learning and teaching of linear algebra and expertise in Game Based Learning (GBL), the team will design IOLA-G to mimic the problem-centered approach of the existing IOLA curriculum and will iteratively refine this platform through teaching experiments with students throughout the project. The project also will explore the extent to which GBL can provide a dynamic approach to addressing the constraints that larger class sizes place on instructors' implementation of inquiry-oriented curricula. In addition to, and as part of the process of, creating the resource technology, the investigators will incorporate a mixed methods approach with a blending of game-based learning design, curriculum design theory, and research from inquiry-based learning to explore the following research questions: What are the mathematical practices that students engage in and the conceptual understandings students develop using IOLA-G compared to when using only the face-to-face IOLA curriculum? What are the affordances and constraints of different game environments in terms of enacting an inquiry-oriented curriculum? The impact of the project will include the positive effects on STEM discipline student learning, knowledge, abilities, and overall success, which will lead to strengthening United States workforce needs in STEM areas.Categories: Faculty-Staff
-
Large Amplitude Electromagnetic Waves in the Radiation Belt
CO-I Miles Bengtson
CO-I Anatoly Streltsov
When the first American satellite, Explorer I, was launched into space it inadvertently discovered one of the most significant features of our local space environment: the Van Allen Radiation Belts. This region contains highly energetic particles that are hazardous. This research involves one promising remediation mechanism based on interactions between these particles and very-low frequency electromagnetic waves known as whistlers.
The Van Allen Radiation Belt is a region in the near-Earth space populated with high-energy, electrically charged particles. Because of their very high energy, these particles present a significant threat to low-Earth orbiting satellites, the International Space Station, and its human crew. The radiation damage to satellite electronics increases when the amount of energetic particles in the radiation belt increases by a factor of 10 or 100 due to the plasma eruptions on the Sun or the high-altitude nuclear explosions. Results from high-altitude nuclear tests produced in 1968 combined with modern computer simulations demonstrate that even a relatively "modest" nuclear explosion (equivalent to a few tenths of kilotons in TNT) in the upper atmosphere can reduce the lifetime of many very important and expensive commercial, military, intelligence, and communication satellites from years to months. Therefore, it is a matter of national security to develop a solid understanding of the basic physics of remediation of energetic particles from the space. One possible way to achieve this goal is to use large amplitude electromagnetic waves. They can efficiently interact with energetic particles and precipitate them from the magnetosphere into the atmosphere. We will study the observations of large-amplitude whistlers detected by the Van Allen Probes satellites in the radiation belt. We also will model these waves with comprehensive numerical models and compare the numerical results with the observed wave dynamics in the magnetosphere. The results from this project are very important for future experiments including launching waves into the radiation belt from ground antennas (like HAARP and Arecibo) or from space platforms.Categories: Undergraduate
-
Integration of the Emerging Space Ecosystem into the National Airspace System (NAS): Simulation and Analysis of Impacts and Solutions, NASA Florida Space Grant Consortium
CO-I Maxwell Cannon
CO-I Noah Eudy
Currently, there is limited, but ongoing, simulation research on the integration of space operations into the NAS that focuses on impacts to other constituents and in finding solutions (cf, Tinoco, et al., 2019; Colvin & Alonso, 2015). Particularly, academic research based on modeling and simulation is quite minimal. Thus, the first objective of this research was to continue our current efforts and develop additional simulation models to analyze the potential impacts of launch and re-entry activities on key NAS stakeholder operations, particularly those of airlines, but also general aviation. NASA KSC/Cape Canaveral Air Force Station (CCAFS) clearly play a critical role in both the state of Florida and in our nation’s space ecosystem. As such, our area of interest was defined as Cape Canaveral, Florida. We built on our previous simulation research that centered on horizonal take-off and landing of Concept Z reusable launch vehicles (RLV) at Cecil Air and Space Port in Jacksonville, FL (cf, Tinoco et al (2019); Tinoco et al, pending) and our understanding of air traffic routes on the heavily traveled Eastern Seaboard.
Particularly in the United States (U.S.), the number of spaceports is growing as both public and private entities are examining commercialized space transportation as a means of revenue and economic growth. Conversely, stakeholders that lie outside the space industry, such as those in our nation’s aviation sector, view space transportation with caution, concerned about the negative effects on their own operations as space launch and return activities become the norm rather than the exception. These non-space stakeholders will directly and indirectly impact the pace and development of the U.S. space economy. Thus, safe, equitable, efficient and effective integration of space activities into the NAS is critical to all stakeholders, influencing the realized economic and non-economic benefits that these stakeholders aspire. Clearly, the new space economy will ultimately profit us all as a nation. However, this new path of growth must be examined through multiple lenses in order to achieve maximum benefit for everyone. As such, our target audience includes all stakeholders that are impacted by or can impact airspace closures due to space activities whether they be the launch providers, airlines, NASA, the US Air Force, the FAA, general aviation, policy makers, communities, and general public.
Currently, there is limited, but ongoing, simulation research on the integration of space operations into the NAS that focuses on impacts to other constituents and in finding solutions (cf, Tinoco, et al., 2019; Colvin & Alonso, 2015). Particularly, academic research based on modeling and simulation is quite minimal. Thus, the first objective of this research was to continue our current efforts and develop additional simulation models to analyze the potential impacts of launch and re-entry activities on key NAS stakeholder operations, particularly those of airlines, but also general aviation. NASA KSC/Cape Canaveral Air Force Station (CCAFS) clearly play a critical role in both the state of Florida and in our nation’s space ecosystem. As such, our area of interest was defined as Cape Canaveral, Florida. We built on our previous simulation research that centered on horizonal take-off and landing of Concept Z reusable launch vehicles (RLV) at Cecil Air and Space Port in Jacksonville, FL (cf, Tinoco et al (2019); Tinoco et al, pending) and our understanding of air traffic routes on the heavily traveled Eastern Seaboard.
In order to meet the first objective, the student researchers specifically targeted the following questions with respect to Cape Canaveral space activities:
1) What are the most common airspace closures
2) What times are they closed and for how long?
3) What number of planes fly through this airspace during the time and space of closure?
4) What type of air traffic is impacted (commercial, general aviation)?
The second objective was to work on finding solutions that are generalizable across the NAS, irrespective of spaceport location. For this objective, the researchers asked:
1) What are the rerouting options?
2) What are the impacts if we vary time of day and size of closure window?
3) What other solutions are available?
For this research effort, we focused on vertical launches using Falcon 9 airspace closure data from 2019, as well as horizontal landings of the Space Shuttle at Kennedy Space Center (KSC) Shuttle Landing Facility (SLF)[1] using historical shuttle airspace closure data. For the latter, we chose to examine horizontal arrival operations as the LLF prepares to accept landings of the Sierra Nevada Dream Chaser, following proper site operator licensing for Space Florida. We also considered the landing of the X-37B.
For our simulation software, we used NASA Future Air Traffic Management (ATM) Concepts Evaluation Tool (FACET) version 19.0 with NAS (National Airspace System) Constraint Evaluation and Notification Tool (NASCENT) version 19.03. The first phase included understanding the baseline model, representing the existing NAS conditions without space launch/landing operations at Cape Canaveral, Florida. Our database was that of real air traffic on March 30, 2016 (a “no launch” date) provided by NASA AMES for use with FACET. In the second phase, closed airspace, defined by historic NOTAMs, allowed us to identify how many and what type of air traffic would be impacted by the temporary flight restrictions (TFRs) in terms of time and space during launch/landing activities.
[1] Also referred to as the Launch Landing Facility (LLF), operated and managed by Space Florida.
Categories: Faculty-Staff
241-250 of 263 results