Embry‑Riddle partners with private and public entities to assist in developing solutions to today's and tomorrow's aeronautical and aerospace problems. Here at the world's largest aviation-oriented university, our focus on applied research is unique.
Filter by



51-60 of 263 results

  • Wind Powered Water Pump

    PI Jeff Brown

    CO-I Christopher Hays

    The vision of the Wind-Powered Water Pump project is to develop a template for the development of long-range water transportation in areas where no other external energy sources are available.

    In the developing world, the transportation of water from its source to an area of need can be troublesome. Many of the men and women in developing communities must exert strenuous amounts of effort to walk the miles to retrieve the few gallons of water that will be used over the following day(s). As representatives of the Honors Students Association, we propose a solution to this problem – a wind-powered water pump. This pump will eliminate the trek to get water, by efficiently and cheaply transporting the water to them.

    Due to the lack of infrastructure and no external source of energy, the water pump must be powered with energy acquired by its own means. The project team will be conducting research into the efficiency and feasibility of multiple designs to accomplish this goal. The project will be divided into teams, each with a unique task deemed necessary to the completion of the project. Each team will be comprised of at least one, possibly two upperclassmen as leads and then primarily first-year students within the Honors Students Association. The team leads will be put into contact with a willing faculty advisor who will serve as a guide through the more challenging aspects of the project. Through this structure, teams will be able to accomplish their respective tasks while making progress toward accomplishing the project’s goal. 

    Categories: Undergraduate

  • Gold Standards Training and Evaluator Calibration of Pilot School Check Instructors

    PI Paul Cairns

    CO-I Andrew Dattel

    ​A key component of air carrier advanced qualification programs is the calibration and training of instructors and evaluators and assurance of reliable and valid data in support of such programs. A significant amount of research is available concerning the calibration of air carrier evaluators, but no research exists regarding the calibration of pilot school check instructors. This study was designed to determine if pilot school check instructors can be calibrated against a gold standard to perform reliable and accurate evaluations.

    Calibration followed the principles and theories of andragogy and adult learning and teaching, including an emphasis on the cognitive domain of learning, learner-centered instruction, and human resource development. These in combination with methods commonly used in aviation instruction aimed to increase the effectiveness of the calibration. Discussion of these combinations is included. A specific method for delivery of the calibration was provided along with a complete lesson plan. This study used a one-group pretest-posttest design. A group of 10 pilot school check instructors was measured before and after receiving rater calibration training. Statistical measures included raw inter- and referent-rater agreement percentages, Cohen’s kappa and kappa-like statistics for inter- and referent-rater reliability, Pearson product-moment correlations for sensitivity to true changes in pilot performance, and a standardized mean absolute difference for grading accuracy. Improvement in all the measurements from pretest to posttest was expected, but actual results were mixed. However, a holistic interpretation of the results combined with feedback from the check instructors showed promise in calibration training for pilot school check instructors. A thorough discussion of the limitations and lessons learned from the study, recommendations for pilot schools, and recommendations for future research is included. 

    Categories: Graduate

  • Examining Unstable Approach Predictors Using Flight Data Monitoring Information

    PI David Carroll

    CO-I David Esser

    The approach and landing phase of flight is statistically the most dangerous part of flying. While it only accounts for 4% of flight time, it represents 49% of commercial jet mishaps. One key to mitigating the risks involved in this flight segment is the stabilized approach. A stabilized approach requires meeting rigorous standards for many flight parameters as the aircraft nears landing. Exceeding any of these parameters results in an unstable approach (UA). The energy management (EM) accomplished by the flight crew, represented by the EM variables in the study, influences the execution of a stabilized approach.



    While EM is a critical element of executing a stabilized approach, there appears to be a lack of studies that identify specific EM variables that contribute to UA probability. Additionally, several possible moderating variables (MVs) may affect the probability of a UA. Fortunately, modern jet transport aircraft have Flight Data Monitoring (FDM) systems that capture a wealth of information that enable the analysis of these EM variables. This study used FDM data to answer the questions about what influence a set of EM variables has on the probability of a UA event. The analysis also determined what impact a set of possible MVs, not directly related to EM, has on these EM variables influence.

    The analysis used logistic regression (LR) to investigate FDM information. The LR provided estimations of odds ratios for each of the variables and the interaction factors for the MVs. These statistics defined a model to evaluate the influences of the EM and MVs, providing answers to the research questions posed. The results determined the model was a good fit to the data but had poor discrimination. The model supported three of the original seven EM hypotheses and none of the 28 MV hypotheses.

    The study identified three specific EM variables that significantly influenced the probability of a UA event. Of the MVs, only one significant influence was revealed but was opposite that hypothesized. Identifying the EM variables, and examining their impacts, shows their importance in preventing UAs. Further, the results help prevent future UAs by informing the design of training programs. Additionally, the current effort fills gaps in the current body of knowledge, as there appears to be a lack of studies in the areas investigated.

    A gap in the body of knowledge filled by investigating an area of limited research and the results provide practical application in the analysis of EM-related events. Aviation safety practitioners now have additional information to identify trend issues that may lead to the increased probability of a UA event. Finally, this study was one of very few granted access to actual operational FDM information by an air carrier. The data were crucial in evaluating the proposed model against real-world flight operations, comparing theory to reality. Without access to such closely held information, the research for this dissertation would not have been possible.

    Categories: Graduate

  • Developing Autonomous, Targeted Feedback in Precalculus

    PI Darryl Chamberlain

    The overriding goal of this project is to investigate student knowledge in a Precalculus course at ERAU-W in order to construct autonomous, targeted feedback for free-responses questions to enhance students' online learning. This will be accomplished by analyzing student responses to exam questions and interviewing students to probe how their mathematical conceptions correspond to their exam responses. 

    Categories: Faculty-Staff

  • The Development and Validation of the Game User Experience Satisfaction Scale (GUESS)

    PI Barbara Chaparro

    PI Joseph Keebler

    CO-I Mikki Phan, User Experience Researcher, Google

    The purpose of this research is to develop and psychometrically validate a new instrument that comprehensively measures video game satisfaction based on key factors. The video game industry often conducts playtesting sessions in order to provide insight into players’ attitudes and preferences. However, quality feedback is difficult to obtain from playtesting sessions without a quality gaming assessment tool. ​



    A new instrument measuring video game satisfaction, called the Game User Experience Satisfaction Scale (GUESS), with nine subscales emerged. These scales included Usability/Playability, Narratives, Play Engrossment, Enjoyment, Creative Freedom, Audio Aesthetics, Personal Gratification, Social Connectivity, and Visual Aesthetics.

    The GUESS was developed and validated based on the assessments of over 450 unique video game titles across many popular genres. Thus, it can be applied across many types of video games in the industry both as a way to assess what aspects of a game contribute to user satisfaction and as a tool to aid in debriefing users on their gaming experience. Based on current best practices of scale development and validation, the project used a mixed-method design that consisted of item pool generation, expert review, questionnaire pilot study, exploratory factor analysis (N = 629), and confirmatory factor analysis (N = 729).

    Results from this multistage process demonstrate that the GUESS can be administered to video game players with various gaming experience (e.g., newbie/novice, hardcore/expert) playing a variety of game genres. Ratings of all the items per factor can be averaged to obtain a score of each subscale and average scores for each subscale can be added together in order to obtain a composite score of video game satisfaction. This can aid game designers in determining aspects of a game to improve as well as emphasize to target gaming markets. 

    Since its development and validation, the GUESS continues to be used to understand video game satisfaction across platforms and user groups by both the GEARS and User Experience Research labs at ERAU as well as gaming labs from other universities. 

    This was dissertation research by Dr. Mikki Phan supervised by Dr. Barbara Chaparro and Dr. Joseph Keebler.  Mikki is now a User Experience Researcher at Google in Mountain View, CA. For more information, see Phan, M. H., Keebler, J. R., & Chaparro, B. S. (2016). The Development and Validation of the Game User Experience Satisfaction Scale (GUESS). Human Factors, 58(8), 1217-1247 and http://www.wired.co.uk/article/science-can-now-determine-how-good-any-video-game-is . Contact Barbara.Chaparro@erau.edu to obtain the GUESS instrument.

    Mikki Phan, PhD​ Mikki Phan, PhD

    Categories: Graduate

  • A Boltzmann Simulator for Porous Media Flows

    PI Leitao Chen

    ​This project develops numerical simulations through parallel development of a Boltzmann model to capture and elucidate multiscale thermos-fluids behaviors in porous media, as well as the fluid-solid interactions.

    ​To accurately simulate porous media flow problem, a kinetic model based on the Boltzmann equation (BE) was developed. Two primary reasons justified the choice of a BE-based approach over conventional Navier-Stokes (N-S) computational fluid dynamics (CFD) methods. First, the fluid flow within porous media often occurs in extremely narrow channels, representing high-Knudsen-number flow regimes. The Knudsen number (Kn), defined as the ratio of molecular mean free path to the smallest channel dimension, indicates that traditional N-S equations are physically inadequate for accurately describing these flow conditions. Conversely, BE-based models are well-established to yield physically accurate results for high-Kn flows. Second, from a computational standpoint, the BE inherently involves a simpler mathematical structure due to its linear advection term, substantially reducing computational overhead compared to the nonlinear N-S equations. This simplification significantly improves computational efficiency, especially critical for simulating flow within complex porous structures. To better capture the complex boundaries in porous media, a meshless discretization method of the BE has been developed in this project. This meshless approach entirely eliminates dependency on mesh generation, offering significant advantages in accurately simulating flow through porous media.

    Categories: Faculty-Staff

  • Cost Optimization Modeling for Airport Capacity Expansion Problems in Metropolitan Areas

    PI Woo Jin Choi

    CO-I Dothang Truong

    The purpose of this research was to develop a cost optimization model to identify an optimal solution to expand airport capacity in metropolitan areas in consideration of demand uncertainties. The study first analyzed four airport capacity expansion cases from different regions of the world to identify possible solutions to expand airport capacity and key cost functions which are highly related to airport capacity problems. Using mixedinteger nonlinear programming (MINLP), a deterministic optimization model was developed with the inclusion of six cost functions: capital cost, operation cost, delay cost, noise cost, operation readiness, and airport transfer (ORAT) cost, and passenger access cost. These six cost functions can be used to consider a possible trade-off between airport capacity and congestion and address multiple stakeholders’ cost concerns.



    This deterministic model was validated using an example case of the Sydney metropolitan area in Australia, which presented an optimal solution of a dual airport system along with scalable outcomes for a 50-year timeline. The study also tested alternative input values to the discount rate, operation cost, and passenger access costs to review the reliability of the deterministic model. Six additional experimental models were tested, and all models successfully yielded optimal solutions. The moderating effects of financial discount rate, airport operation cost, and passenger access costs on the optimal solution were quantitatively the same in presence of a deterministic demand profile.

    This deterministic model was then transformed into a stochastic optimization model to address concerns with the uncertainty of future traffic demand, which was further reviewed with three what-if demand scenarios of the Sydney Model: random and positive growth of traffic demand, normal distribution of traffic demand changes based on the historical traffic record of the Sydney region, and reflection of the current COVID- 19 pandemic situation. This study used a Monte Carlo simulation to address the uncertainty of future traffic demand as an uncontrollable input. The Sydney Model and three What-if Models successfully presented objective model outcomes and identified the optimal solutions to expand airport capacity while minimizing overall costs. The results of this work indicated that the moderating effect of traffic uncertainties can make a difference with an optimal solution. Therefore, airport decision-makers and airport planners should carefully consider the uncertainty factors that would influence the airport capacity expansion solution.

    This research demonstrated the effectiveness of combining MINLP and the Monte Carlo simulation to support a long-term strategic decision for airport capacity problems in metropolitan areas at the early stages of the planning process while addressing future traffic demand uncertainty. Other uncertainty factors, such as political events, new technologies, alternative modes of transport, financial crisis, technological innovation, and demographic changes might also be treated as uncontrollable variables to augment this optimization model.

    Categories: Graduate

  • Project Global Officer

    PI Aaron Clevenger

    Project GO provide's overseas language instruction consisting of a minimum of 8 weeks and/or 150 contact hours (per grant program) to ROTC students nationwide with the goal of helping student to reach an ILR 1 proficiency level in a critical language: Mandarin Chinese in Taiwan, and Arabic in Jordan. All students should reach the objective of successfully applying the target language and cultural knowledge in actual communication with native speakers.

    Categories: Faculty-Staff

  • Project Haiti

    PI Marc Compere

    The goals of Project Haiti are to provide Haitians with clean drinking water, to expose our college students to another culture, and to give them a hands-on experience using their engineering skills to directly help people.



    Many Haitians living in the tent cities after the earthquake deal with chronic intestinal sickness from contaminated water. Our solar water purifier is designed to provide clean drinking water for 500 adults per day.The Summer 2014 purifier will be installed at the Dayspring Missions orphanage in Croix des Bouquets area, a suburb east of Port-Au-Prince, Haiti. It will provide up to 6000 gallons of water a day with the water being used by the orphans, distributed to three local church communities, as well as being sold to the community to generate income and filter replacement costs.

    This project is an ideal intersection of humanitarian aid and engineering. Our students designed and built Embry‑Riddle's solar powered water purifier for delivery to a Haitian tent camp. They learned how to use solar panels, batteries, pumps, and filters to construct a purifier that runs entirely from the sun. Now that it is completed, our students have become better engineers and they have learned a global perspective and the satisfaction of helping people in a developing country.

    More on Project Haiti

    Past Efforts

    Summer 2010

    In Summer 2010 Embry‑Riddle students delivered a 1 gallon-per-minute (gpm) water purifier powered entirely from the sun. The 2010 trip report presentation is available here. It was a valuable success for over 150 college student volunteers who traveled to Haiti that summer to help the disaster relief effort. The Nehemiah Vision Ministries camp upgraded to a 10gpm unit for greater capacity.

    Summer 2011

    In Summer 2011, our team of students designed and installed a 4gpm unit powered entirely from the sun. We installed it at the Anne Clemande Children's Foundation in Chambellan, Haiti. They operate a children's home and school with approximately 600 children and staff. They had no access to clean drinking water. The 2011 trip report is downloadable here.

    Summer 2012

    In Summer 2012, our team of Embry‑Riddle students delivered a community water system providing 14gpm of clean, safe water to an Internally Displaced People (IDP) camp named Onaville The purifier is in daily operation delivering roughly 15,000 gallons per day. Onaville was the largest tent city in Haiti during post-earthquake Haiti. This is our most successful trip from a partnership standpoint, a purifier standpoint, and also an academic standpoint. Students received credit during a summer course titled ME595 Practicum in Water Purification. The 2012 trip report is here.

    Summer 2013

    The Summer 2013 unit was installed in Michaud, Haiti, at the Ryan Epps Home for Children. Michaud is a suburb of Port-Au-Prince. This is a 14gpm unit powered entirely by the sun which means nearly zero recurring cost to operate the unit. This is ideal for starting a sustainable micro-business. This system combined with the micro-business provides clean, safe drinking water and also create jobs, generate recurring income, and improve community health. The 2013 trip report is available for download here.
     

    Academic Integration

    • Our 2012 EPA P3 Entry was a Portable Solar Water Purification Backpack for Disaster Releief. It won the $90k EPA Phase II award, the US Army's NetZero Water Award, and the Student's Choice Award at the 2012 National Sustainable Design Expo
    • Dr. Compere teaches two water courses:
      • ME595J, Practicum in Water Purification is a lab based, hands-on course that provides students with practical experience in testing for water-borne pathogens, water purification methods, and solar power systems
      • HON350, Emerging Trends in Global Water Supply and Demand is a humanities survey course raising awareness of water as the new high-value commodity. This course highlights the major issues in the water-energy nexus, water-food nexus, and water-climate nexus.
    • An American Society of Engineering Education (ASEE) SouthEast Regional conference paper on the 2012 unit and trip is available here.

    Contact

    Donate

    Gifts at any level make a direct impact: Donate to Project Haiti.

    Categories: Undergraduate

51-60 of 263 results