Embry-Riddle partners with private and public entities to assist in developing solutions to today's and tomorrow's aeronautical and aerospace problems. Here at the world's largest aviation-oriented university, our focus on applied research is unique.
Search
Our Research
Location
College
Area of Focus
Clear Filters

1-2 of 2 results

  • Damage Control Measures in Composites: Focus on Damage Tolerance of Aerospace Structures

    PI Alberto Mello

    CO-I Kais Jribi

    CO-I Doug Neill (C.E.S. LLC)

    CO-I Jon Gosse (C.E.S. LLC)

    The focus of this research is to provide advanced methods and tools to address damage tolerance in composite structure 
    Read more

    Tags: Composites Fatigue Damage Tolerance Onset Methodology Delamination Crack

    Categories: Graduate

  • Nanoscale Design of Interfacial Kinematics in Composite Manufacturing

    PI Sirish Namilae

    CO-I Marwan Al-Haik

    This NSF-funded research will elucidate the role of interfacial kinematics and energetics in the evolution of inter-ply interfaces in composite structures during manufacturing. The research team will develop a novel experimental method for in-situ characterization of surface and interface deformations during composite processing, utilizing a customized commercial composite autoclave with a digital image correlation system. The surface strain and displacement measurements will be combined with ex-situ X-ray tomography and thermal characterization to map the interfacial thermomechanical response as a function of design and processing parameters. Additionally, the interfacial behavior will be engineered through the rapid and controlled growth of ZnO nanowires on carbon fibers to create a nanoscale interfacial component that increases the fiber bending resistance and creates an interlocking effect at the interfaces to mitigate defects propagation. The experimental research will be complemented by molecular dynamics simulations of the sliding of amorphous polymer interfaces and mesoscale simulation of flow in porous media. This comprehensive approach of in-situ characterization, interface design, and modeling will lead to a fundamental understanding of the ply movement during composite manufacturing and development of methods to reduce the occurrence of processing-induced defects.


    Read more

    Tags: Composites

    Categories: Faculty-Staff

1-2 of 2 results