Ph.D. in
Aerospace Engineering
Candidates in this program do classwork and research in aerospace structures, propulsion and aerodynamic systems, and have access to state-of-the-art labs and facilities.
Aerospace Engineering deals with the scientific principles that govern the design of airplanes, spacecraft, and jet engines. The Ph.D. in Aerospace Engineering degree program allows highly motivated students with a strong science and engineering background to conduct research and coursework in the areas of aerospace structures, propulsion, and aerodynamic systems, while earning their doctoral degree.
Admission to the program is reserved for candidates at the bachelor and masters levels, with high academic achievement and a desire to advance their career through scientific inquiry and knowledge discovery in areas related to aerospace engineering.
Program coursework focuses on cutting-edge research and development. Students have access to state-of-the-art labs designed specifically for instruction and research in aerodynamics, propulsion, dynamics, control, structures, and materials.
DETAILS
About Aerospace Engineering at the Daytona Beach, FL Campus
The Ph.D. in Aerospace Engineering program at ERAU’s Daytona Beach Campus targets domestic and international students, as well as working professionals with bachelor’s or master's degrees in aerospace engineering (or closely related engineering disciplines), who have exemplary track records of academic achievement in their course work, and demonstrated keen interest and ability for engaging in research and independent inquiry.
Housed in the Aerospace Engineering Department of the College of Engineering, the program features three areas of concentration: Aerodynamics and Propulsion, Structures and Materials, and Dynamics and Control.
Candidates for this degree program can expect areas of research to include:
- Computational Fluid Dynamics (CFD)
- Aeroacoustics
- Air-breathing propulsion
- Rocket propulsion
- Combustion
- Experimental thermo-fluid sciences
- Simulation of aerodynamics and propulsion systems
- Health monitoring of aerospace structures
- Smart materials and structures
- Adaptive structures
- Composite materials
- Functionally graded materials
- Dynamics and control of manned and unmanned aircraft
- Parameter identification of aircraft
- Space mission design
- Design and control of spacecraft
- Orbital debris remediation
- Spacecraft rendezvous and proximity operations
- Control of chaotic systems
Being adjacent to Daytona Beach International Airport and the NextGen Test Bed, and just 50 miles north of Kennedy Space Center, ERAU’s Daytona Beach Campus puts students in the middle of the aerospace industry.
Learn More about the Daytona Beach, FL Campus
View the Daytona Beach Catalog Listing
Financial aid is available in the form of teaching and research assistantships. Please contact the program coordinator for more information.
Transfer credit: Up to 2 relevant courses can be transferred from another institution upon approval of the program coordinator.
Student Learning Outcomes
Students will:
- Analyze and solve engineering problems.
- Conduct independent study.
- Carry out research or special projects.
- Use analytical, computational and experimental techniques.
- Demonstrate critical thinking and problem solving skills.
- Technically communicate their research within the aerospace engineering community.
- Observe ethics in research.
Get Started Now:
Summary
42 Credits
Estimate your tuition by using the Tuition Calculator
View Financial Aid Information
Learn about our General Education
Find out about transferring credits to this degree
Learn more about our Veterans & Military benefits
View our Academic Calendar